ChemInform Abstract: Enzymatic Reactions in Ionic Liquids: Lipase-Catalyzed Kinetic Resolution of Racemic, P-Chiral Hydroxymethanephosphinates and Hydroxymethylphosphine Oxides.

ChemInform ◽  
2010 ◽  
Vol 33 (40) ◽  
pp. no-no
Author(s):  
Piotr Kielbasinski ◽  
Malgorzata Albrycht ◽  
Jerzy Luczak ◽  
Marian Mikolajczyk
2002 ◽  
Vol 13 (7) ◽  
pp. 735-738 ◽  
Author(s):  
Piotr Kiełbasiński ◽  
Małgorzata Albrycht ◽  
Jerzy Łuczak ◽  
Marian Mikołajczyk

2021 ◽  
Vol 10 ◽  
Author(s):  
Abhra Sarkar ◽  
Siddharth Pandey

: Ionic Liquids (ILs) in their neoteric form have emerged to be a potential ‘green’ alternative of traditional Volatile Organic Compounds (VOCs) as solvents in different fields of industries and academia. Recent investigations on the development of multi-faceted applications of ionic liquids have revealed that they really stand for “environmentally-benign” solvents as far as their impact on the ecology is concerned. This caused them to be an exciting and lucrative subject to explore more and more, and many research groups are involved in the manifestation of their inherent undisclosed legacy. Recently, there has been a huge jump in search of an alternative to conventional metal catalysts in academia as well as in industries due to their pollution-evoking roles. Scientists have explored multiple numbers of homogeneous or heterogeneous mixtures of catalysts incorporating ionic liquids to reduce the extent of contamination in our global environment produced due to catalytic synthesis and chemical transformations. In this review, we have put our concentration on some beneficial and recently explored aspects of the successful implementation of Ionic Liquids in different forms in several fields of catalysis as a ‘green’ alternative catalyst/co-catalyst/solvent for catalysis to replace or minimize the lone and hazardous use of metal and metallic compounds as catalysts as well as chemicals like mineral acids or VOCs as solvents. Here, our study focuses on the inevitable role of ILs in several catalytic reactions like cycloaddition of CO2, electrolytic reduction of CO2, biocatalytic or enzymatic reactions, some of the important organic conversions, and biomass to biofuel conversion as catalysts, cocatalysts, catalyst activator, and solvents.


2009 ◽  
Vol 11 (4) ◽  
pp. 538 ◽  
Author(s):  
Pedro Lozano ◽  
Teresa De Diego ◽  
Corina Mira ◽  
Kimberley Montague ◽  
Michel Vaultier ◽  
...  

2021 ◽  
Vol 874 ◽  
pp. 88-95
Author(s):  
Oktavianus Hendra Cipta ◽  
Anita Alni ◽  
Rukman Hertadi

The structure of Candida rugosa lipase can be affected by solvents used in the enzymatic reactions. Using molecular dynamics simulation as a tool to study the Candida rugosa lipase structure, we studied the effect of various solvent systems, such as water, water-methanol, and water-methanol-ionic liquid. These solvent systems have been chosen because lipase is able to function in both aqueous and non-aqueous medium. In this study, pyridinium (Py)-based ionic liquids were selected as co-solvent. The MD simulation was run for 50 nanoseconds for each solvent system at 328 K. In the case of water-methanol-ionic liquids solvent systems, the total number of the ionic liquids added were varied: 222, 444, and 888 molecules. Water was used as the reference solvent system. The structure of Candida rugosa lipase in water-methanol system significantly changed from the initial structure as indicated by the RMSD value, which was about 6.4 Å after 50 ns simulation. This value was relatively higher compared to the other water-methanol solvent system containing ionic liquid as co-solvent, which were 2.43 Å for 4Py-Br, 2.1 Å for 8Py-Br, 3.37 Å for 4Py-BF4 and 3.49 Å for 8Py-BF4 respectively. Further analysis by calculating the root mean square fluctuation (RMSF) of each lipase residue found that the presence of ionic liquids could reduce changes in the enzyme structure. This happened because the anion component of the ionic liquid interacts relatively more strongly with residues on the surface of the protein as compared to methanol, thereby lowering the possibility of methanol to come into contact with the protein.


2021 ◽  
Vol 27 ◽  
pp. 100406
Author(s):  
Amal A.M. Elgharbawy ◽  
Muhammad Moniruzzaman ◽  
Masahiro Goto

2008 ◽  
Vol 314 (1-2) ◽  
pp. 238-246 ◽  
Author(s):  
F.J. Hernández-Fernández ◽  
A.P. de los Ríos ◽  
F. Tomás-Alonso ◽  
D. Gómez ◽  
G. Víllora

2012 ◽  
Author(s):  
Giang Vo-Thanh ◽  
Jana Doháňošová ◽  
Tibor Gracza ◽  
Angelika Lásiková ◽  
Martial Toffano

2020 ◽  
Author(s):  
David Kreutter ◽  
Philippe Schwaller ◽  
Jean-Louis Reymond

The use of enzymes for organic synthesis allows for simplified, more economical and selective synthetic routes not accessible to conventional reagents. However, predicting whether a particular molecule might undergo a specific enzyme transformation is very difficult. Here we exploited recent advances in computer assisted synthetic planning (CASP) by considering the Molecular Transformer, which is a sequence-to-sequence machine learning model that can be trained to predict the products of organic transformations, including their stereochemistry, from the structure of reactants and reagents. We used multi-task transfer learning to train the Molecular Transformer with one million reactions from the US Patent Office (USPTO) database as a source of general chemistry knowledge combined with 32,000 enzymatic transformations, each one annotated with a text description of the enzyme. We show that the resulting Enzymatic Transformer model predicts the products formed from a given substrate and enzyme with remarkable accuracy, including typical kinetic resolution processes.


Sign in / Sign up

Export Citation Format

Share Document