The Influence of Mixed Ionic Electronic Conductivity in the Hydrogen Electrode Reaction in Solid State Electrochemical Cells

ChemInform ◽  
2006 ◽  
Vol 37 (36) ◽  
Author(s):  
P. Holtappels ◽  
M. C. Verbraeken ◽  
D. H. Blank ◽  
B. A. Boukamp
2008 ◽  
Author(s):  
Henk Bolink ◽  
Rubén D. Costa ◽  
Enrique Orti ◽  
Michele Sessolo ◽  
Stefan Graber ◽  
...  

2020 ◽  
Vol 46 (16) ◽  
pp. 25527-25535 ◽  
Author(s):  
V.A. Sadykov ◽  
E.M. Sadovskaya ◽  
E.A. Filonova ◽  
N.F. Eremeev ◽  
N.M. Bogdanovich ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1320
Author(s):  
Shaik Gouse Peera ◽  
Ravindranadh Koutavarapu ◽  
Chao Liu ◽  
Gaddam Rajeshkhanna ◽  
Arunchander Asokan ◽  
...  

Electrochemical water splitting is considered a promising way of producing hydrogen and oxygen for various electrochemical energy devices. An efficient single, bi-functional electrocatalyst that can perform hydrogen evolution reactions (HERs) and oxygen evolution reactions (OERs) is highly essential. In this work, Co@NC core-shell nanoparticles were synthesized via a simple, eco-friendly, solid-state synthesis process, using cobalt nitrate and with pyrazole as the N and C source. The morphological analysis of the resulting Co@NC nanoparticles was performed with a scanning and transmission electron microscope, which showed Co nanoparticles as the core and the pyrolysis of pyrazole organic ligand N-doped carbon derived shell structure. The unique Co@NC nanostructures had excellent redox sites for electrocatalysis, wherein the N-doped carbon shell exhibited superior electronic conductivity in the Co@NC catalyst. The resulting Co@NC nanocatalyst showed considerable HER and OER activity in an alkaline medium. The Co@NC catalyst exhibited HERs overpotentials of 243 and 170 mV at 10 mA∙cm−2 on glassy carbon and Ni foam electrodes, respectively, whereas OERs were exhibited overpotentials of 450 and 452 mV at a current density of 10 and 50 mA∙cm−2 on glassy carbon electrode and Ni foam, respectively. Moreover, the Co@NC catalyst also showed admirable durability for OERs in an alkaline medium.


2003 ◽  
Vol 35 (11) ◽  
pp. 1793-1807 ◽  
Author(s):  
S.K. Rakshit ◽  
S.C. Parida ◽  
S. Dash ◽  
Ziley Singh ◽  
R. Prasad ◽  
...  

1992 ◽  
Vol 271 ◽  
Author(s):  
J. J. Kingsley ◽  
L. A. Chick ◽  
G. W. Coffey ◽  
D. E. McCready ◽  
L. R. Pederson

ABSTRACTSr-substituted perovskite LaCo0.4Fe0.6O3 is known to have excellent mixed ionic and electronic conductivity and increased O2 sorption characteristics. These perovskites are usually prepared by lengthy solid-state reactions of the component oxides at temperatures near 1150°C, and often produce inhomogeneous, multi-phase powders. Presently, it has been prepared by the calcination of combustion-derived fine mixed oxides at 850°C in 6 hrs. Combustion reactions are carried out using precursor solutions containing the corresponding metal nitrates (oxidizers) and glycine (fuel) at 250°C. The metal oxides produced by this process and subsequent calcination were characterized by XRD, TEM and BET surface area analysis.


1997 ◽  
Vol 85 (1-3) ◽  
pp. 1229-1232 ◽  
Author(s):  
Q. Pei ◽  
Y. Yang ◽  
G. Yu ◽  
Y. Cao ◽  
A.J. Heeger

2012 ◽  
Vol 22 (19) ◽  
pp. 9556 ◽  
Author(s):  
Hsiao-Fan Chen ◽  
Chao Wu ◽  
Ming-Cheng Kuo ◽  
Mark E. Thompson ◽  
Ken-Tsung Wong

2013 ◽  
Vol 27 (22) ◽  
pp. 1350156 ◽  
Author(s):  
R. J. ZHU ◽  
Y. REN ◽  
L. Q. GENG ◽  
T. CHEN ◽  
L. X. LI ◽  
...  

Amorphous V 2 O 5, LiPON and Li 2 Mn 2 O 4 thin films were fabricated by RF magnetron sputtering methods and the morphology of thin films were characterized by scanning electron microscopy. Then with these three materials deposited as the anode, solid electrolyte, cathode, and vanadium as current collector, a rocking-chair type of all-solid-state thin-film-type Lithium-ion rechargeable battery was prepared by using the same sputtering parameters on stainless steel substrates. Electrochemical studies show that the thin film battery has a good charge–discharge characteristic in the voltage range of 0.3–3.5 V, and after 30 cycles the cell performance turned to become stabilized with the charge capacity of 9 μAh/cm2, and capacity loss of single-cycle of about 0.2%. At the same time, due to electronic conductivity of the electrolyte film, self-discharge may exist, resulting in approximately 96.6% Coulombic efficiency.


Sign in / Sign up

Export Citation Format

Share Document