coulombic efficiency
Recently Published Documents





Mahdieh Hakimi ◽  
Zeinab Sanaee ◽  
Shahnaz Ghasemi ◽  
Shamsoddin Mohajerzadeh

Abstract The main drawback of Lithium-Sulfur (Li-S) batteries which leads to a short lifetime, is the shuttle effect during the battery operation. One of the solutions to mitigate the shuttle effect is the utilization of interlayers. Herein, graphene oxide (GO) paper as an interlayer has been implemented between the sulfur cathode fabricated by the vapor deposition process as a binder-free electrode and a separator in a Li-S battery in order to gain a sufficient capacity. The morphological characteristics and electrochemical performance of the fabricated electrode have been investigated. The fabricated battery demonstrates an initial discharge capacity of 1265.46 mAh g-1 at the current density of 100 mA g-1. The coulombic efficiency is obtained to be 88.49% after 40 cycles. The remained capacity for the battery is 44.70% after several cycles at different current densities. The existence of the GO interlayer improves the electrochemical properties of the battery compared to the one with a pure sulfur cathode. The obtained results indicate that after 40 cycles, the capacity retention is 2.1 times more than that of the battery without the GO implementation.

Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 236
Jinyun Liu ◽  
Yajun Zhu ◽  
Junfei Cai ◽  
Yan Zhong ◽  
Tianli Han ◽  

Long-term stable secondary batteries are highly required. Here, we report a unique microcapsule encapsulated with metal organic foams (MOFs)-derived Co3O4 nanocages for a Li-S battery, which displays good lithium-storage properties. ZIF-67 dodecahedra are prepared at room temperature then converted to porous Co3O4 nanocages, which are infilled into microcapsules through a microfluidic technique. After loading sulfur, the Co3O4/S-infilled microcapsules are obtained, which display a specific capacity of 935 mAh g−1 after 200 cycles at 0.5C in Li-S batteries. A Coulombic efficiency of about 100% is achieved. The constructed Li-S battery possesses a high rate-performance during three rounds of cycling. Moreover, stable performance is verified under both high and low temperatures of 50 °C and −10 °C. Density functional theory calculations show that the Co3O4 dodecahedra display large binding energies with polysulfides, which are able to suppress shuttle effect of polysulfides and enable a stable electrochemical performance.

Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 396
Tongxin Li ◽  
Donglin Li ◽  
Qingbo Zhang ◽  
Jianhang Gao ◽  
Long Zhang ◽  

Fast charging-discharging is one of the important requirements for next-generation high-energy Li-ion batteries, nevertheless, electrons transport in the active oxide materials is limited. Thus, carbon coating of active materials is a common method to supply the routes for electron transport, but it is difficult to synthesize the oxide-carbon composite for LiNiO2-based materials which need to be calcined in an oxygen-rich atmosphere. In this work, LiNi0.8Co0.1Mn0.1O2 (NCM811) coated with electronic conductor LaNiO3 (LNO) crystallites is demonstrated for the first time as fast charging-discharging and high energy cathodes for Li-ion batteries. The LaNiO3 succeeds in providing an exceptional fast charging-discharging behavior and initial coulombic efficiency in comparison with pristine NCM811. Consequently, the NCM811@3LNO electrode presents a higher capacity at 0.1 C (approximately 246 mAh g−1) and a significantly improved high rate performance (a discharge specific capacity of 130.62 mAh g−1 at 10 C), twice that of pristine NCM811. Additionally, cycling stability is also improved for the composite material. This work provides a new possibility of active oxide cathodes for high energy/power Li-ion batteries by electronic conductor LaNiO3 coating.

2022 ◽  
Vol 2022 ◽  
pp. 1-11
Bin Yang ◽  
Zengyue Wang ◽  
Wanwan Wang ◽  
Yi-Chun Lu

Aqueous redox flow batteries (ARFBs) are a promising technology for large-scale energy storage. Developing high-capacity and long-cycle negolyte materials is one of major challenges for practical ARFBs. Inorganic polysulfide is promising for ARFBs owing to its low cost and high solubility. However, it suffers from severe crossover resulting in low coulombic efficiency and limited lifespan. Organosulfides are more resistant to crossover than polysulfides owing to their bulky structures, but they suffer from slow reaction kinetics. Herein, we report a thiolate negolyte prepared by an exchange reaction between a polysulfide and an organosulfide, preserving low crossover rate of the organosulfide and high reaction kinetics of the polysulfide. The thiolate denoted as 2-hydroxyethyl disulfide+potassium polysulfide (HEDS+K2S2) shows reduced crossover rate than K2S2, faster reaction kinetics than HEDS, and longer lifespan than both HEDS and K2S2. The 1.5 M HEDS+1.5 M K2S2 static cell demonstrated 96 Ah L-1negolyte over 100 and 200 cycles with a high coulombic efficiency of 99.2% and 99.6% at 15 and 25 mA cm-2, respectively. The 0.5 M HEDS+0.5 M K2S2 flow cell delivered a stable and high capacity of 30.7 Ah L-1negolyte over 400 cycles (691 h) at 20 mA cm-2. This study presents an effective strategy to enable low-crossover and fast-kinetics sulfur-based negolytes for advanced ARFBs.

2022 ◽  
Vol 905 ◽  
pp. 135-141
Bao Juan Yang ◽  
Rui Xia ◽  
Su Bin Jiang ◽  
Mei Zhen Gao

Due to high theoretical specific capacity and abundant reserves, tin selenide-based materials have received tremendous attentions in the fields of lithium-ion batteries. Nevertheless, the huge volume changes during insertion/de-intercalation processes deteriorate the Coulombic Efficiency greatly. In order to solve it, the researchers have made great efforts by means of controlling nanoparticles granularity, carbon coating, ion doping et al. In this study, SnSe/Cu2SnSe3 heterojunction nanocomposites were synthesized by solvo-thermal method. The resulting SnSe/Cu2SnSe3 is a three-dimensional flower-like hierarchical nanostructure composed of nanoscale thin lamellae of a thickness of 8-12 nm. The unique nanostructure could shorten the diffusion path of lithium ions and expedite charge transfer, and therefore enhance the reaction kinetics. Compared with SnSe, the initial Coulombic efficiency of SnSe/Cu2SnSe3 is raised from 59% to 90% as the anode material of lithium-ion batteries.

Bumjun Park ◽  
Christiana Oh ◽  
Sooyoun Yu ◽  
Bingxin Yang ◽  
Nosang Vincent Myung ◽  

Abstract As the energy storage markets demand increased capacity of rechargeable batteries, Li metal anodes have regained major attention due to their high theoretical specific capacity. However, Li anodes tend to have dendritic growth and constant electrolyte consumption upon cycling, which lead to safety concerns, low Coulombic efficiency, and short cycle life of the battery. In this work, both conductive and non-conductive 3D porous hosts were coupled with a viscous (melt) polymer electrolyte. The cross-section of the hosts showed good contact between porous hosts and the melt polymer electrolyte before and after extensive cycling, indicating that the viscous electrolyte successfully refilled the space upon Li stripping. Upon deep Li deposition/stripping cycling (5 mAh cm-2), the non-conductive host with the viscous electrolyte successfully cycled, while conductive host allowed rapid short circuiting. Post-mortem cross-sectional imaging showed that the Li deposition was confined to the top layers of the host. COMSOL simulations indicated that current density was higher and more restricted to the top of the conductive host with the polymer electrolyte than the liquid electrolyte. This resulted in quicker short circuiting of the polymer electrolyte cell during deep cycling. Thus, the non-conductive 3D host is preferred for coupling with the melt polymer electrolyte.

Ehsan Ghasemiestahbanati ◽  
Areeb Shehzad ◽  
Kristina Konstas ◽  
Caitlin J. Setter ◽  
Luke A. O'Dell ◽  

Sulfonated porous aromatic frameworks (SPAFs) accelerate Li-ion diffusion while retarding the polysulfide shuttle effect in Li–S batteries. This leads to high residual capacity above 1000 mA h g−1 and coulombic efficiency (>99.5%) after 500 cycles.

Sign in / Sign up

Export Citation Format

Share Document