ChemInform Abstract: A General, Efficient, and Functional-Group-Tolerant Catalyst System for the Palladium-Catalyzed Thioetherification of Aryl Bromides and Iodides.

ChemInform ◽  
2009 ◽  
Vol 40 (25) ◽  
Author(s):  
Manuel A. Fernandez-Rodriguez ◽  
John F. Hartwig
2020 ◽  
Vol 74 (12) ◽  
pp. 4593-4598
Author(s):  
László Orha ◽  
Ábrahám Papp ◽  
József M. Tukacs ◽  
László Kollár ◽  
László T. Mika

Abstract The introduction of a biomass-derived ionic liquid into the Hiyama coupling reactions, which has been considered as a powerful tool for the synthesis of symmetrically and non-symmetrically substituted biaryl structures, could further control or even reduce the environmental impact of this transformation. It was shown that tetrabutylphosphonium 4-ethoxyvalerate, a γ-valerolactone-based ionic liquid, can be utilized as an alternative solvent to create carbon–carbon bonds between aryl iodides and functionalized organosilanes in the presence of 1 mol% Pd under typical Hiyama conditions (130 °C, 24 h, tetrabutylammonium fluoride activator). A comparison of different ionic liquids was performed, and the effects of the catalyst precursor and the moisture content of the reaction mixture on the activity of the catalyst system were investigated. The functional group tolerance was also studied, resulting in 15 cross-coupling products (3a–o) with isolated yields of 45–72% and excellent purity (> 98%).


2020 ◽  
Author(s):  
Baojian Xiong ◽  
Yue Li ◽  
Yin Wei ◽  
Søren Kramer ◽  
Zhong Lian

Cross-coupling between substrates that can be easily derived from phenols is highly attractive due to the abundance and low cost of phenols. Here, we report a dual nickel/palladium-catalyzed reductive cross-coupling between aryl tosylates and aryl triflates; both substrates can be accessed in just one step from readily available phenols. The reaction has a broad functional group tolerance and substrate scope (>60 examples). Furthermore, it displays low sensitivity to steric effects demonstrated by the synthesis of a 2,2’disubstituted biaryl and a fully substituted aryl product. The widespread presence of phenols in natural products and pharmaceuticals allow for straightforward late-stage functionalization, illustrated with examples such as Ezetimibe and tyrosine. NMR spectroscopy and DFT calculations indicate that the nickel catalyst is responsible for activating the aryl triflate, while the palladium catalyst preferentially reacts with the aryl tosylate.


2019 ◽  
Author(s):  
John Montgomery ◽  
Alexander W. Rand

A new method to access alpha-arylated benzamides has been enabled by metallaphotoredox catalysis. This system allows for non-directed C–H functionalization of N-alkyl benzamides using a dual nickel/iridium catalytic system to form tertiary stereocenters in good enantiomeric excess and moderate yields. This reaction shows excellent functional group compatibility and can be performed using a number of sterically and electronically different aryl bromides and secondary benzamides.


2019 ◽  
Author(s):  
John Montgomery ◽  
Alexander W. Rand

A new method to access alpha-arylated benzamides has been enabled by metallaphotoredox catalysis. This system allows for non-directed C–H functionalization of N-alkyl benzamides using a dual nickel/iridium catalytic system to form tertiary stereocenters in good enantiomeric excess and moderate yields. This reaction shows excellent functional group compatibility and can be performed using a number of sterically and electronically different aryl bromides and secondary benzamides.


Sign in / Sign up

Export Citation Format

Share Document