On cauchy's problem for hyperbolic equations and the differentiability of solutions of elliptic equations

1955 ◽  
Vol 8 (4) ◽  
pp. 615-633 ◽  
Author(s):  
Peter D. Lax
2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
A. Aslam ◽  
F. M. Mahomed

Cotton-type invariants for a subclass of a system of two linear elliptic equations, obtainable from a complex base linear elliptic equation, are derived both by spliting of the corresponding complex Cotton invariants of the base complex equation and from the Laplace-type invariants of the system of linear hyperbolic equations equivalent to the system of linear elliptic equations via linear complex transformations of the independent variables. It is shown that Cotton-type invariants derived from these two approaches are identical. Furthermore, Cotton-type and joint invariants for a general system of two linear elliptic equations are also obtained from the Laplace-type and joint invariants for a system of two linear hyperbolic equations equivalent to the system of linear elliptic equations by complex changes of the independent variables. Examples are presented to illustrate the results.


2016 ◽  
Vol 151 (3-4) ◽  
pp. 469-476
Author(s):  
Yongpan Huang ◽  
Dongsheng Li ◽  
Kai Zhang

2020 ◽  
Vol 6 (2) ◽  
pp. 751-771 ◽  
Author(s):  
Claudia Capone ◽  
Teresa Radice

Abstract In this paper we establish the higher differentiability of solutions to the Dirichlet problem $$\begin{aligned} {\left\{ \begin{array}{ll} \text {div} (A(x, Du)) + b(x)u(x)=f &{} \text {in}\, \Omega \\ u=0 &{} \text {on} \, \partial \Omega \end{array}\right. } \end{aligned}$$ div ( A ( x , D u ) ) + b ( x ) u ( x ) = f in Ω u = 0 on ∂ Ω under a Sobolev assumption on the partial map $$x \rightarrow A(x, \xi )$$ x → A ( x , ξ ) . The novelty here is that we take advantage from the regularizing effect of the lower order term to deal with bounded solutions.


1965 ◽  
Vol 14 (4) ◽  
pp. 293-302 ◽  
Author(s):  
A. G. Mackie

Methods for solving boundary value problems in linear, second order, partial differential equations in two variables tend to be somewhat rigidly partitioned in some of the standard text-books. Problems for elliptic equations are sometimes solved by finding the fundamental solution which is defined as a solution with a given singularity at a certain point. Another approach is by way of Green's functions which are usually defined as solutions of the original homogeneous equations now made inhomogeneous by the introduction of adelta function on the right hand side. The Green's function coincides with the fundamental solution for elliptic equations but exhibits a totally different type of singularity for parabolic or hyperbolic equations. Boundary value problems for hyperbolic equations can often by solved by Riemann's method which depends on the existence of an auxiliary function called the Riemann or sometimes the Riemann-Green function. The main object of this paper is to show the close relationship between Riemann's method and the method of Green's functions. This not only serves to unify different methods of solution of boundary value problems but also provides an additional method of determining Riemann functions for given hyperbolic equations. Before establishing these relationships we shall survey the general approach to boundary value problems through the use of the Green's function.


Sign in / Sign up

Export Citation Format

Share Document