linear elliptic equation
Recently Published Documents


TOTAL DOCUMENTS

88
(FIVE YEARS 4)

H-INDEX

11
(FIVE YEARS 0)

2021 ◽  
Vol 8 (26) ◽  
pp. 311-319
Author(s):  
Layan El Hajj ◽  
Henrik Shahgholian

In this paper we prove symmetry for solutions to the semi-linear elliptic equation Δ u = f ( u )  in  B 1 , 0 ≤ u > M ,  in  B 1 , u = M ,  on  ∂ B 1 , \begin{equation*} \Delta u = f(u) \quad \text { in } B_1, \qquad 0 \leq u > M, \quad \text { in } B_1, \qquad u = M, \quad \text { on } \partial B_1, \end{equation*} where M > 0 M>0 is a constant, and B 1 B_1 is the unit ball. Under certain assumptions on the r.h.s. f ( u ) f (u) , the C 1 C^1 -regularity of the free boundary ∂ { u > 0 } \partial \{u>0\} and a second order asymptotic expansion for u u at free boundary points, we derive the spherical symmetry of solutions. A key tool, in addition to the classical moving plane technique, is a boundary Harnack principle (with r.h.s.) that replaces Serrin’s celebrated boundary point lemma, which is not available in our case due to lack of C 2 C^2 -regularity of solutions.



2021 ◽  
Vol 11 (1) ◽  
pp. 285-303
Author(s):  
Chen Huang

Abstract We give a new non-smooth Clark’s theorem without the global symmetric condition. The theorem can be applied to generalized quasi-linear elliptic equations with small continous perturbations. Our results improve the abstract results about a semi-linear elliptic equation in Kajikiya [10] and Li-Liu [11].



2021 ◽  
Vol 4 (5) ◽  
pp. 1-22
Author(s):  
David Cruz-Uribe ◽  
◽  
Michael Penrod ◽  
Scott Rodney ◽  

<abstract><p>In an earlier paper, Cruz-Uribe, Rodney and Rosta proved an equivalence between weighted Poincaré inequalities and the existence of weak solutions to a family of Neumann problems related to a degenerate $ p $-Laplacian. Here we prove a similar equivalence between Poincaré inequalities in variable exponent spaces and solutions to a degenerate $ {p(\cdot)} $-Laplacian, a non-linear elliptic equation with nonstandard growth conditions.</p></abstract>



2020 ◽  
Vol 17 (4) ◽  
pp. 594-600
Author(s):  
Olga Trofymenko

We characterize solutions of the mean value linear elliptic equation with constant coefficients in the complex plane in the case of regular polygon.





Author(s):  
Domenico Angelo La Manna ◽  
Chiara Leone ◽  
Roberta Schiattarella

Abstract In this paper we consider a linear elliptic equation in divergence form $$\begin{aligned} \sum _{i,j}D_j(a_{ij}(x)D_i u )=0 \quad \hbox {in } \Omega . \end{aligned}$$ ∑ i , j D j ( a ij ( x ) D i u ) = 0 in Ω . Assuming the coefficients $$a_{ij}$$ a ij in $$W^{1,n}(\Omega )$$ W 1 , n ( Ω ) with a modulus of continuity satisfying a certain Dini-type continuity condition, we prove that any very weak solution $$u\in L^{n'}_\mathrm{loc}(\Omega )$$ u ∈ L loc n ′ ( Ω ) of (0.1) is actually a weak solution in $$W^{1,2}_\mathrm{loc}(\Omega )$$ W loc 1 , 2 ( Ω ) .



2019 ◽  
Vol 13 (06) ◽  
pp. 2050115 ◽  
Author(s):  
Kamel Tahri

Let [Formula: see text] be a closed Riemannian manifold, under some assumptions on [Formula: see text] and [Formula: see text] by applying a method used in [Tarantello, On nonhomogeneous elliptic equations involving critical Sobolev exponent, Ann. Inst. Henri Poincaré 9 (1992) 281–304], we show the existence and multiplicity of solutions of the semi-linear elliptic equation: [Formula: see text]. When [Formula: see text] is an Einsteinian manifold of positive scalar curvature, under additional conditions, we obtain the existence of positive solutions.



Sign in / Sign up

Export Citation Format

Share Document