On the predictability of next generation mobile network traffic using artificial neural networks

2013 ◽  
Vol 28 (8) ◽  
pp. 1484-1492 ◽  
Author(s):  
I. Loumiotis ◽  
E. Adamopoulou ◽  
K. Demestichas ◽  
T. Stamatiadi ◽  
M. Theologou
2019 ◽  
Author(s):  
René Janßen ◽  
Jakob Zabel ◽  
Uwe von Lukas ◽  
Matthias Labrenz

AbstractArtificial neural networks can be trained on complex data sets to detect, predict, or model specific aspects. Aim of this study was to train an artificial neural network to support environmental monitoring efforts in case of a contamination event by detecting induced changes towards the microbial communities. The neural net was trained on taxonomic cluster count tables obtained via next-generation amplicon sequencing of water column samples originating from a lab microcosm incubation experiment conducted over 140 days to determine the effects of the herbicide glyphosate on succession within brackish-water microbial communities. Glyphosate-treated assemblages were classified correctly; a subsetting approach identified the clusters primarily responsible for this, permitting the reduction of input features. This study demonstrates the potential of artificial neural networks to predict indicator species in cases of glyphosate contamination. The results could empower the development of environmental monitoring strategies with applications limited to neither glyphosate nor amplicon sequence data.Highlight bullet pointsAn artificial neural net was able to identify glyphosate-affected microbial community assemblages based on next generation sequencing dataDecision-relevant taxonomic clusters can be identified by a stochastically subsetting approachJust a fraction of present clusters is needed for classificationFiltering of input data improves classification


Genes ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1755
Author(s):  
Moritz Kohls ◽  
Magdalena Kircher ◽  
Jessica Krepel ◽  
Pamela Liebig ◽  
Klaus Jung

Estimating the taxonomic composition of viral sequences in a biological samples processed by next-generation sequencing is an important step in comparative metagenomics. Mapping sequencing reads against a database of known viral reference genomes, however, fails to classify reads from novel viruses whose reference sequences are not yet available in public databases. Instead of a mapping approach, and in order to classify sequencing reads at least to a taxonomic level, the performance of artificial neural networks and other machine learning models was studied. Taxonomic and genomic data from the NCBI database were used to sample labelled sequencing reads as training data. The fitted neural network was applied to classify unlabelled reads of simulated and real-world test sets. Additional auxiliary test sets of labelled reads were used to estimate the conditional class probabilities, and to correct the prior estimation of the taxonomic distribution in the actual test set. Among the taxonomic levels, the biological order of viruses provided the most comprehensive data base to generate training data. The prediction accuracy of the artificial neural network to classify test reads to their viral order was considerably higher than that of a random classification. Posterior estimation of taxa frequencies could correct the primary classification results.


Sign in / Sign up

Export Citation Format

Share Document