scholarly journals Reduction and recovery of keystone predation pressure after disease-related mass mortality

2018 ◽  
Vol 8 (8) ◽  
pp. 3952-3964 ◽  
Author(s):  
Monica M. Moritsch ◽  
Peter T. Raimondi
Coral Reefs ◽  
2021 ◽  
Author(s):  
Eleanor J. Vaughan ◽  
Shaun K. Wilson ◽  
Samantha J. Howlett ◽  
Valeriano Parravicini ◽  
Gareth J. Williams ◽  
...  

AbstractScleractinian corals are engineers on coral reefs that provide both structural complexity as habitat and sustenance for other reef-associated organisms via the release of organic and inorganic matter. However, coral reefs are facing multiple pressures from climate change and other stressors, which can result in mass coral bleaching and mortality events. Mass mortality of corals results in enhanced release of organic matter, which can cause significant alterations to reef biochemical and recycling processes. There is little known about how long these nutrients are retained within the system, for instance, within the tissues of other benthic organisms. We investigated changes in nitrogen isotopic signatures (δ15N) of macroalgal tissues (a) ~ 1 year after a bleaching event in the Seychelles and (b) ~ 3 months after the peak of a bleaching event in Mo’orea, French Polynesia. In the Seychelles, there was a strong association between absolute loss in both total coral cover and branching coral cover and absolute increase in macroalgal δ15N between 2014 and 2017 (adjusted r2 = 0.79, p = 0.004 and adjusted r2 = 0.86, p = 0.002, respectively). In Mo’orea, a short-term transplant experiment found a significant increase in δ15N in Sargassum mangarevense after specimens were deployed on a reef with high coral mortality for ~ 3 weeks (p < 0.05). We suggest that coral-derived nutrients can be retained within reef nutrient cycles, and that this can affect other reef-associated organisms over both short- and long-term periods, especially opportunistic species such as macroalgae. These species could therefore proliferate on reefs that have experienced mass mortality events, because they have been provided with both space and nutrient subsidies by the death and decay of corals.


Biomarkers ◽  
2021 ◽  
pp. 1-12
Author(s):  
İbrahim Ender Künili ◽  
Selin Ertürk Gürkan ◽  
Ata Aksu ◽  
Emre Turgay ◽  
Fikret Çakir ◽  
...  

2019 ◽  
Vol 116 (30) ◽  
pp. 15080-15085 ◽  
Author(s):  
Katharine R. Hind ◽  
Samuel Starko ◽  
Jenn M. Burt ◽  
Matthew A. Lemay ◽  
Anne K. Salomon ◽  
...  

Understanding how trophic dynamics drive variation in biodiversity is essential for predicting the outcomes of trophic downgrading across the world’s ecosystems. However, assessing the biodiversity of morphologically cryptic lineages can be problematic, yet may be crucial to understanding ecological patterns. Shifts in keystone predation that favor increases in herbivore abundance tend to have negative consequences for the biodiversity of primary producers. However, in nearshore ecosystems, coralline algal cover increases when herbivory is intense, suggesting that corallines may uniquely benefit from trophic downgrading. Because many coralline algal species are morphologically cryptic and their diversity has been globally underestimated, increasing the resolution at which we distinguish species could dramatically alter our conclusions about the consequences of trophic dynamics for this group. In this study, we used DNA barcoding to compare the diversity and composition of cryptic coralline algal assemblages at sites that differ in urchin biomass and keystone predation by sea otters. We show that while coralline cover is greater in urchin-dominated sites (or “barrens”), which are subject to intense grazing, coralline assemblages in these urchin barrens are significantly less diverse than in kelp forests and are dominated by only 1 or 2 species. These findings clarify how food web structure relates to coralline community composition and reconcile patterns of total coralline cover with the widely documented pattern that keystone predation promotes biodiversity. Shifts in coralline diversity and distribution associated with transitions from kelp forests to urchin barrens could have ecosystem-level effects that would be missed by ignoring cryptic species’ identities.


2013 ◽  
Vol 13 (1) ◽  
pp. 132 ◽  
Author(s):  
Kristin Scharnweber ◽  
Kozo Watanabe ◽  
Jari Syväranta ◽  
Thomas Wanke ◽  
Michael T Monaghan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document