scholarly journals Nitrogen enrichment in macroalgae following mass coral mortality

Coral Reefs ◽  
2021 ◽  
Author(s):  
Eleanor J. Vaughan ◽  
Shaun K. Wilson ◽  
Samantha J. Howlett ◽  
Valeriano Parravicini ◽  
Gareth J. Williams ◽  
...  

AbstractScleractinian corals are engineers on coral reefs that provide both structural complexity as habitat and sustenance for other reef-associated organisms via the release of organic and inorganic matter. However, coral reefs are facing multiple pressures from climate change and other stressors, which can result in mass coral bleaching and mortality events. Mass mortality of corals results in enhanced release of organic matter, which can cause significant alterations to reef biochemical and recycling processes. There is little known about how long these nutrients are retained within the system, for instance, within the tissues of other benthic organisms. We investigated changes in nitrogen isotopic signatures (δ15N) of macroalgal tissues (a) ~ 1 year after a bleaching event in the Seychelles and (b) ~ 3 months after the peak of a bleaching event in Mo’orea, French Polynesia. In the Seychelles, there was a strong association between absolute loss in both total coral cover and branching coral cover and absolute increase in macroalgal δ15N between 2014 and 2017 (adjusted r2 = 0.79, p = 0.004 and adjusted r2 = 0.86, p = 0.002, respectively). In Mo’orea, a short-term transplant experiment found a significant increase in δ15N in Sargassum mangarevense after specimens were deployed on a reef with high coral mortality for ~ 3 weeks (p < 0.05). We suggest that coral-derived nutrients can be retained within reef nutrient cycles, and that this can affect other reef-associated organisms over both short- and long-term periods, especially opportunistic species such as macroalgae. These species could therefore proliferate on reefs that have experienced mass mortality events, because they have been provided with both space and nutrient subsidies by the death and decay of corals.

2019 ◽  
Author(s):  
William F. Precht ◽  
Richard B. Aronson ◽  
Toby A. Gardner ◽  
Jennifer A. Gill ◽  
Julie P. Hawkins ◽  
...  

AbstractCaribbean reefs have experienced unprecedented changes in the past four decades. Of great concern is the perceived widespread shift from coral to macroalgal dominance and the question of whether it represents a new, stable equilibrium for coral-reef communities. The primary causes of the shift -- grazing pressure (top-down), nutrient loading (bottom-up) or direct coral mortality (side-in) -- still remain somewhat controversial in the coral reef literature. We have attempted to tease out the relative importance of each of these causes. Four insights emerge from our analysis of an early regional dataset of information on the benthic composition of Caribbean reefs spanning the years 1977–2001. First, although three-quarters of reef sites have experienced coral declines concomitant with macroalgal increases, fewer than 10% of the more than 200 sites studied were dominated by macroalgae in 2001, by even the most conservative definition of dominance. Using relative dominance as the threshold, a total of 49 coral-to-macroalgae shifts were detected. This total represents ∼35% of all sites that were dominated by coral at the start of their monitoring periods. Four shifts (8.2%) occurred because of coral loss with no change in macroalgal cover, 15 (30.6%) occurred because of macroalgal gain without coral loss, and 30 (61.2%) occurred owing to concomitant coral decline and macroalgal increase. Second, the timing of shifts at the regional scale is most consistent with the side-in model of reef degradation, which invokes coral mortality as a precursor to macroalgal takeover, because more shifts occurred after regional coral-mortality events than expected by chance. Third, instantaneous observations taken at the start and end of the time-series for individual sites showed these reefs existed along a continuum of coral and macroalgal cover. The continuous, broadly negative relationship between coral and macroalgal cover suggests that in some cases coral-to-macroalgae phase shifts may be reversed by removing sources of perturbation or restoring critical components such as the herbivorous sea urchin Diadema antillarum to the system. The five instances in which macroalgal dominance was reversed corroborate the conclusion that macroalgal dominance is not a stable, alternative community state as has been commonly assumed. Fourth, the fact that the loss in regional coral cover and concomitant changes to the benthic community are related to punctuated, discrete events with known causes (i.e. coral disease and bleaching), lends credence to the hypothesis that coral reefs of the Caribbean have been under assault from climate-change-related maladies since the 1970s.


Author(s):  
Makamas Sutthacheep ◽  
Makamas Sutthacheep ◽  
Thamasak Yeemin ◽  
Thamasak Yeemin ◽  
Sittiporn Pengsakun ◽  
...  

Mass bleaching and subsequent mortality of scleractinian corals in response to elevated seawater temperatures has been considered as one of the most impacts of global climate change. Three extensive coral bleaching events in the Andaman Sea were reported, in the years 1991, 1995 and 2010. Studies on survival of coral colonies, coral recruitment and community structure of coral reef associated macrofauna would predict the trends for coral recovery from the impacts of coral bleaching events. The present study aimed to examine the status of coral communities, density of coral recruits and coral reef associated macrofauna at nearshore coral reefs in Phangnga Province, the Andaman Sea following the 2010 coral bleaching event. The dead coral cover was high (>50%) while the live coral cover was in the range of 13-21%. There was high diversity of coral recruits on natural substrates. The average densities of macrobenthic fauna varied from 1.9 to 2.6 individuals.m-2, with significant differences among study sites. The dominant macrobenthic species were a soft coral (Lobophytum sp.), a sea star (Linckia laevigata) and a sea urchin (Echinostrephus molaris). Coral recovery at these coral reefs would be possible but local anthropogenic stressors must be overwhelmingly reduced in order to enhance coral reef resilience. The long-term monitoring programs in the Andaman Sea are required for decision makers to support their adaptive management approaches.


2021 ◽  
Author(s):  
Coulson A. Lantz ◽  
William Leggat ◽  
Jessica L. Bergman ◽  
Alexander Fordyce ◽  
Charlotte Page ◽  
...  

Abstract. Coral bleaching events continue to drive the degradation of coral reefs worldwide, causing a shift in the benthic community from coral to algae dominated ecosystems. Critically, this shift may decrease the capacity of degraded coral reef communities to maintain net positive accretion during warming-driven stress events (e.g., reef-wide coral bleaching). Here we measured rates of net ecosystem calcification (NEC) and net ecosystem production (NEP) on a degraded coral reef lagoon community (coral cover  20 %) during a reef-wide bleaching event in February of 2020 at Heron Island on the Great Barrier Reef. We found that during this bleaching event, rates of community NEP and NEC across replicate transects remained positive and did not change in response to bleaching. Repeated benthic surveys over a period of 20 d indicated an increase in the percent area of bleached coral tissue, corroborated by relatively low Symbiodiniaceae densities (~0.6 × 106 cm−2) and dark-adapted photosynthetic yields in photosystem II of corals (~0.5) sampled along each transect over this period. Given that a clear decline in coral health was not reflected in the overall community NEC estimates, it is possible that elevated temperatures in the water column that compromise coral health enhanced the thermodynamic favourability for calcification in other, ahermatypic benthic calcifiers. These data suggest that positive NEC on degraded reefs may not equate to the net positive accretion of reef structure in a future, warmer ocean. Critically, our study highlights that if coral cover continues to decline as predicted, NEC may no longer be an appropriate proxy for reef growth as the proportion of the community NEC signal owed to ahermatypic calcification increases and coral dominance on the reef decreases.


Author(s):  
Makamas Sutthacheep ◽  
Makamas Sutthacheep ◽  
Thamasak Yeemin ◽  
Thamasak Yeemin ◽  
Sittiporn Pengsakun ◽  
...  

Mass bleaching and subsequent mortality of scleractinian corals in response to elevated seawater temperatures has been considered as one of the most impacts of global climate change. Three extensive coral bleaching events in the Andaman Sea were reported, in the years 1991, 1995 and 2010. Studies on survival of coral colonies, coral recruitment and community structure of coral reef associated macrofauna would predict the trends for coral recovery from the impacts of coral bleaching events. The present study aimed to examine the status of coral communities, density of coral recruits and coral reef associated macrofauna at nearshore coral reefs in Phangnga Province, the Andaman Sea following the 2010 coral bleaching event. The dead coral cover was high (>50%) while the live coral cover was in the range of 13-21%. There was high diversity of coral recruits on natural substrates. The average densities of macrobenthic fauna varied from 1.9 to 2.6 individuals.m-2, with significant differences among study sites. The dominant macrobenthic species were a soft coral (Lobophytum sp.), a sea star (Linckia laevigata) and a sea urchin (Echinostrephus molaris). Coral recovery at these coral reefs would be possible but local anthropogenic stressors must be overwhelmingly reduced in order to enhance coral reef resilience. The long-term monitoring programs in the Andaman Sea are required for decision makers to support their adaptive management approaches.


Hydrobiologia ◽  
2021 ◽  
Author(s):  
L. Saponari ◽  
I. Dehnert ◽  
P. Galli ◽  
S. Montano

AbstractCorallivory causes considerable damage to coral reefs and can exacerbate other disturbances. Among coral predators, Drupella spp. are considered as delayer of coral recovery in the Republic of Maldives, although little information is available on their ecology. Thus, we aimed to assess their population structure, feeding behaviour and spatial distribution around 2 years after a coral bleaching event in 2016. Biological and environmental data were collected using belt and line intercept transects in six shallow reefs in Maldives. The snails occurred in aggregations with a maximum of 62 individuals and exhibited a preference for branching corals. Yet, the gastropods showed a high plasticity in adapting feeding preferences to prey availability. Drupella spp. were homogenously distributed in the study area with an average of 9.04 ± 19.72 ind/200 m2. However, their occurrence was significantly different at the reef scale with the highest densities found in locations with higher coral cover. The impact of Drupella spp. appeared to be minimal with the population suffering from the loss of coral cover. We suggest that monitoring programs collect temporal- and spatial-scale data on non-outbreaking populations or non-aggregating populations to understand the dynamics of predation related to the co-occurrence of anthropogenic and natural impacts.


2021 ◽  
Vol 14 (9) ◽  
pp. 1-7
Author(s):  
N.D. Hung ◽  
L.T.H. Thuy ◽  
T.V. Hang ◽  
T.N. Luan

The coral reef ecosystem in Cu Lao Cham, Vietnam is part of the central zone of the Cu Lao Cham -Hoi An, a biosphere reserve and it is strictly protected. However, the impacts of natural disasters - tropical cyclones (TCs) go beyond human protection. The characteristic feature of TCs is strong winds and the consequences of strong winds are high waves. High waves caused by strong TCs (i.e. level 13 or more) cause decline in coral cover in the seas around Cu Lao Cham. Based on the relationship between sea surface temperature (SST) and the maximum potential intensity (MPI) of TCs, this research determines the number of strong TCs in Cu Lao Cham in the future. Using results from a regional climate change model, the risk is that the number of strong TCs in the period 2021-2060 under the RCP4.5 scenario, will be 3.7 times greater than in the period 1980-2019 and under the RCP 8.5 scenario it will be 5.2 times greater than in the period 1980-2019. We conclude that increases in SST in the context of climate change risks will increase the number and intensity of TCs and so the risk of their mechanical impact on coral reefs will be higher leading to degradation of this internationally important site.


F1000Research ◽  
2018 ◽  
Vol 6 ◽  
pp. 1728 ◽  
Author(s):  
Andrew H Baird ◽  
Sally A. Keith ◽  
Erika Woolsey ◽  
Ryuta Yoshida ◽  
Tohru Naruse

Coral bleaching can be induced by many different stressors, however, the most common cause of mass bleaching in the field is higher than average sea surface temperatures (SST). Here, we describe an unusual bleaching event that followed very calm sea conditions combined with higher than average SST. Patterns of mortality differed from typical bleaching in four ways: 1) mortality was very rapid; 2) a different suite of species were most affected; 3) tissue mortality in Acropora spp. was often restricted to the center of the colony; 4) the event occurred early in summer. The two weeks prior to the event included 8 days where the average wind speed was less than 3 ms-1. In addition, SSTs in the weeks preceding and during the event were 1.0-1.5°C higher than the mean for the last 30 years. We hypothesize that this unusual bleaching event was caused by anoxia resulting from a lack of water movement induced by low wind speeds combined with high SST.


PLoS ONE ◽  
2017 ◽  
Vol 12 (6) ◽  
pp. e0178795 ◽  
Author(s):  
Marc Besson ◽  
Camille Gache ◽  
Rohan M. Brooker ◽  
Rakamaly Madi Moussa ◽  
Viliame Pita Waqalevu ◽  
...  

Author(s):  
Jenny E House ◽  
Luc M Bidaut ◽  
Alec P Christie ◽  
Oscar Pizarro ◽  
Maria Dornelas

Coral reefs are a valuable and vulnerable marine ecosystem. The structure of coral reefs influences their health and ability to fulfill ecosystem functions and services. However, monitoring reef corals largely relies on 1D or 2D estimates of coral cover and abundance that overlook change in ecologically significant aspects of the reefs because they do not incorporate vertical or volumetric information. This study explores the relationship between 2D and 3D metrics of coral size. We show that surface area and volume scale consistently with planar area, albeit with morphotype specific conversion parameters. We use a photogrammetric approach using open-source software to estimate the ability of photogrammetry to provide measurement estimates of corals in 3D. Technological developments have made photogrammetry a valid and practical technique for studying coral reefs. We anticipate that these techniques for moving coral research from 2D into 3D will facilitate answering ecological questions by incorporating the 3rd dimension into monitoring.


2021 ◽  
Vol 324 ◽  
pp. 03007
Author(s):  
Ni Wayan Purnama Sari ◽  
Rikoh Manogar Siringoringo ◽  
Muhammad Abrar ◽  
Risandi Dwirama Putra ◽  
Raden Sutiadi ◽  
...  

Observations of the condition of coral reefs have been carried out in Spermonde waters from 2015 to 2018. The method used in this observation uses Underwater Photo Transect (UPT), and the data obtained is analyzed using CPCe (Coral Point Count with Excel Extensions) software. The results show that the percentage of coral cover has increased from year to year. The percentage of live coral cover in 2015 was 19.64%, 23.60 in 2016, 23.72% in 2017, and 27.83% in 2018. The increase in live coral cover from year to year is thought to occur due to the availability of nutrients. or increasing public awareness, considering this location is one of the most famous tourist attractions in Makassar. Coral reef health index values can be used to classify coral reef health. Through the analysis of the coral reef health index, an index value of 4 was obtained, which means that the condition of the coral reefs is in the “moderate” category.


Sign in / Sign up

Export Citation Format

Share Document