Review for "Characterization of flow interactions in an axial fan stage"

Keyword(s):  
2018 ◽  
Vol 2018 ◽  
pp. 1-21 ◽  
Author(s):  
Adel Ghenaiet

The aim of this paper is to characterize the steady and unsteady flow interactions through a one-stage high-pressure (hp) shrouded axial turbine with a tip cavity. The vane and blade passages were reduced based on the scaling technique, and the domains of compromise were identified and used in the flow computations. The flow structures are mainly in the form of vanes’ wakes and vortices inducing circumferential distortions and interacting with the rotor blades. Fast Fourier transform (FFT) of the static pressure fluctuations recorded at the selected points and lines through the turbine stage revealed high unsteadiness characterized by a space-time periodic behavior, and described by the double Fourier decomposition. The vane-rotor interactions (VRI) appeared in the form of a potential flow field about the blades extending both upstream and downstream and correlated with the rotational speed. The other sources of unsteadiness are induced in the rotor blades by the vanes’ wakes and referred to as the wake interaction, in addition to the secondary flows and vortices in endwall regions.


Author(s):  
Alessio Suman ◽  
Annalisa Fortini ◽  
Nicola Aldi ◽  
Michele Pinelli ◽  
Mattia Merlin

The concept of smart morphing blades, which can control themselves to reduce or eliminate the need for active control systems, is a highly attractive solution in blade technology. In this paper an innovative passive control system based on Shape Memory Alloys (SMAs) is proposed. On the basis of previous thermal and shape characterization of a single morphing blade for a heavy-duty automotive cooling axial fan, this study deals with the numerical analysis of the aerodynamic loads acting on the fan. By coupling CFD and FEM approaches it is possible to analyze the actual blade shape resulting from both the aerodynamic and centrifugal loads. The numerical results indicate that the polymeric blade structure ensures proper resistance and enables shape variation due to the action of the SMA strips.


Sign in / Sign up

Export Citation Format

Share Document