Review on heat transfer analysis in thermal energy storage using latent heat storage systems and phase change materials

2018 ◽  
Vol 43 (1) ◽  
pp. 29-64 ◽  
Author(s):  
Ioan Sarbu ◽  
Alexandru Dorca
2021 ◽  
Vol 11 (19) ◽  
pp. 9305
Author(s):  
Mohamed Sawadogo ◽  
Marie Duquesne ◽  
Rafik Belarbi ◽  
Ameur El Amine Hamami ◽  
Alexandre Godin

Latent heat thermal energy storage systems incorporate phase change materials (PCMs) as storage materials. The high energy density of PCMs, their ability to store at nearly constant temperature, and the diversity of available materials make latent heat storage systems particularly competitive technologies for reducing energy consumption in buildings. This work reviews recent experimental and numerical studies on the integration of PCMs in building envelopes for passive energy storage. The results of the different studies show that the use of PCMs can reduce the peak temperature and smooth the thermal load. The integration of PCMs can be done on the entire building envelope (walls, roofs, windows). Despite many advances, some aspects remain to be studied, notably the long-term stability of buildings incorporating PCMs, the issues of moisture and mass transfer, and the consideration of the actual use of the building. Based on this review, we have identified possible contributions to improve the efficiency of passive systems incorporating PCMs. Thus, fatty acids and their eutectic mixtures, combined with natural insulators, such as vegetable fibers, were chosen to make shape-stabilized PCMs composites. These composites can be integrated in buildings as a passive thermal energy storage material.


RSC Advances ◽  
2016 ◽  
Vol 6 (98) ◽  
pp. 96327-96333 ◽  
Author(s):  
Dong Fang ◽  
Xiaomin Cheng ◽  
Yuanyuan Li ◽  
Zheng Sun

Latent heat storage proves to be one of the most efficient ways of storing thermal energy.


2020 ◽  
Vol 5 (2) ◽  
Author(s):  
Olakunle F Isamotu ◽  
Nicholas A Musa ◽  
Joshua B Aluko ◽  
Maclawrence A Oriaifo

Latent heat storage in salt mixture has drawn so much attention because of the salt mixture’s capability of storing   large quantity of heat when compared to single salt thereby, making it more feasible for use as phase change material.  However it is worthwhile to find out among various combination of salts forming eutectic   mixtures, the one that has the best energy storage capability by evaluating   and comparing their melting points and latent heat storage. So in this research work, four different types of eutectic mixture of   salts were prepared and experimentally   investigated for the best thermal energy storage capability.  The first eutectic mixture consists of 2.6g of LiNO3, 6.4g of NH4NO3   and 1g of NaNO3. The second eutectic mixture consists of1.75g of LiNO3,   3.9g of NH4NO3 and 1.1g of KNO3. The third one consists of 5.2g of   LiNO3, 13.7g   of NH4NO3 and 1g of NH4Cl) and the fourth one consists of 1.77g of LiNO3, 2.94g of NH4NO3,  1g of NaNO3 and 1g of NaCl. The latent heat and the melting point of the respective salt and their eutectic mixture were determined using digital differential scanning Apparatus.  The results obtained showed that the melting points and latent heats of  the first, second, third and fourth eutectic mixture  were 79.50C and 112kJ/kg,  80.50C and 114kJ/kg,  81.40C and 109kJ/kg,  84.40C and 119kJ/kg respectively.  In view of this, the eutectic mixture of 1.77g of LiNO3, 2.94g of NH4NO3, 1g of NaNO3 and 1g of NaCl with melting point of 84.40C and latent heat of 119KJ/Kg was found to possess the best thermal energy storage capability compared to others..Keywords—Eutectic mixture, Salts, Phase change materials (PCM), Latent heat storage


2018 ◽  
Vol 22 (Suppl. 2) ◽  
pp. 527-533 ◽  
Author(s):  
Xiaoyan Li ◽  
Rongpeng Huang ◽  
Xinyue Miao ◽  
Xuelei Wang ◽  
Yabin Liu ◽  
...  

In order to improve the thermal performance of thermal energy storage systems, a packed bed thermal energy storage systems unit using spherical capsules filled with multiple phase change materials (multi-PCM) for use in conventional air-conditioning systems is presented. A 3-D mathematical model was established to investigate the charging characteristics of the thermal energy storage systems unit. The optimum proportion between the multi-PCM was identified. The effects of heat transfer fluid-flow rate and heat transfer fluid inlet temperature on the liquid phase change materials volume fraction, charging time and charging capacity of the thermal energy storage system unit are studied. The results indicate that the charging capacity of multi-PCM units is higher than that of the conventional single-PCM (HY-2). For proportions 0:1:0, 2:3:3, 3:2:3, 3:3:2, 4:1:3, and 4:2:2, the charging capacity decreases by approximately 24.84%, 14.69%, 6.47%, 3.82%, and 1.13%, respectively, compared to the 4:2:2 proportion. Moreover, decreasing the heat transfer fluid inlet temperature can obviously shorten the complete charging time of the thermal energy storage systems unit.


Author(s):  
Weihuan Zhao ◽  
Ali F. Elmozughi ◽  
Sudhakar Neti ◽  
Alparslan Oztekin

Solar energy is receiving a lot of attention since it is a clean, renewable, and sustainable energy. A major limitation however is that it is available for only about 2,000 hours a year in many places and thus it is essential to find ways to store solar thermal energy for the off hours. The present work deals with heat transfer aspects of storing solar thermal energy in high temperature phase change materials with melting points above 300 °C. Two-dimension transient heat transfer analysis is conducted to investigate thermal energy storage using encapsulated phase change material (EPCM) for concentrated solar power (CSP) applications. Sodium nitrate, NaNO3, is considered as the phase change material (PCM) encapsulated by stainless steel in a cylindrical shaped capsule. Stream function-vorticity formulation is employed to study the effect of buoyancy-driven convection in the molten salt on the total charging and discharging times for various sizes of PCM capsulated. Simulations are also conducted for a horizontally placed rod inside a flow channel. Storage times are calculated for laminar and turbulent flows of heat transfer fluids transferring heat into EPCM. It is shown that the buoyancy-driven convection in the molten PCM enhances internal heat transfer inside the capsule and hence helps to slightly shorten the total heat transfer times during both charging and discharging processes. Flow characteristics of the heat transfer fluid have profound effect on the nature of phase change process inside the EPCM rod.


Sign in / Sign up

Export Citation Format

Share Document