Transient 2-D Heat Transfer Analysis of Encapsulated Phase Change Materials for Thermal Energy Storage

Author(s):  
Weihuan Zhao ◽  
Ali F. Elmozughi ◽  
Sudhakar Neti ◽  
Alparslan Oztekin

Solar energy is receiving a lot of attention since it is a clean, renewable, and sustainable energy. A major limitation however is that it is available for only about 2,000 hours a year in many places and thus it is essential to find ways to store solar thermal energy for the off hours. The present work deals with heat transfer aspects of storing solar thermal energy in high temperature phase change materials with melting points above 300 °C. Two-dimension transient heat transfer analysis is conducted to investigate thermal energy storage using encapsulated phase change material (EPCM) for concentrated solar power (CSP) applications. Sodium nitrate, NaNO3, is considered as the phase change material (PCM) encapsulated by stainless steel in a cylindrical shaped capsule. Stream function-vorticity formulation is employed to study the effect of buoyancy-driven convection in the molten salt on the total charging and discharging times for various sizes of PCM capsulated. Simulations are also conducted for a horizontally placed rod inside a flow channel. Storage times are calculated for laminar and turbulent flows of heat transfer fluids transferring heat into EPCM. It is shown that the buoyancy-driven convection in the molten PCM enhances internal heat transfer inside the capsule and hence helps to slightly shorten the total heat transfer times during both charging and discharging processes. Flow characteristics of the heat transfer fluid have profound effect on the nature of phase change process inside the EPCM rod.

RSC Advances ◽  
2016 ◽  
Vol 6 (51) ◽  
pp. 45595-45604 ◽  
Author(s):  
Mohammad Mehrali ◽  
Sara Tahan Latibari ◽  
Marc A. Rosen ◽  
Amir Reza Akhiani ◽  
Mohammad Sajad Naghavi ◽  
...  

A novel shape-stabilized phase change material (SSPCM) was fabricated by using a vacuum impregnation technique for solar-thermal energy storage applications.


Author(s):  
Weihuan Zhao ◽  
Alparslan Oztekin ◽  
Sudhakar Neti ◽  
Kemal Tuzla ◽  
Wojciech M. Misiolek ◽  
...  

Concentrating solar power technology is recognized as an attractive option for solar power. A major limitation however is that solar power is available for only about 2,000 hours a year in many places. Therefore it is critical to find ways to store solar thermal energy for the off hours and it is better to store the energy at high temperatures. The present work deals with certain aspects of storing solar thermal energy at high temperatures with phase change materials (PCM) in the range of 275°C to 425°C. NaNO3 is selected as a phase change material encapsulated by stainless steel. The objective is the storage of hundreds mega-watt-hours equivalent of solar energy in systems using encapsulated phase change materials (EPCM). Numerical predictions of conduction and phase change processes are reported here in the form of transient temperature profiles in the PCM and encapsulation materials of EPCM capsules for convective boundary conditions outside EPCM. The time for heating and melting during charging (storage of thermal energy into encapsulated phase change material) and the time for cooling and solidification during discharging (discharge/retrieval of thermal energy) are predicted for NaNO3 PCM in encapsulation. For a temperature range of about 125°C around melting/freezing temperature of the PCM the time it takes to melt/freeze the PCM during storage/retrieval is much longer than the time it takes for diffusion (sensible heat) storage alone. Depending on the properties of the PCM, the energy associated with the latent heat of melting can be a significant leading to smaller thermal energy storage systems and lower costs. As can be expected, the time for heat transfer is much shorter for liquid heat transfer fluids compared to those for gaseous heat transfer fluids that transport the energy to the EPCM.


Sign in / Sign up

Export Citation Format

Share Document