scholarly journals Changes in the Arctic Ocean carbon cycle with diminishing ice cover

Author(s):  
Michael D. DeGrandpre ◽  
Wiley Evans ◽  
Mary-Louise Timmermans ◽  
Richard A. Krishfield ◽  
William J Williams ◽  
...  
2020 ◽  
Vol 47 (12) ◽  
Author(s):  
Michael DeGrandpre ◽  
Wiley Evans ◽  
Mary‐Louise Timmermans ◽  
Richard Krishfield ◽  
Bill Williams ◽  
...  

2011 ◽  
Vol 116 (C12) ◽  
Author(s):  
M. Manizza ◽  
M. J. Follows ◽  
S. Dutkiewicz ◽  
D. Menemenlis ◽  
J. W. McClelland ◽  
...  

Data Series ◽  
10.3133/ds862 ◽  
2014 ◽  
Author(s):  
Lisa L. Robbins ◽  
Jonathan Wynn ◽  
Paul O. Knorr ◽  
Bogdan Onac ◽  
John T. Lisle ◽  
...  

2021 ◽  
Author(s):  
David Gareth Babb ◽  
Ryan J. Galley ◽  
Stephen E. L. Howell ◽  
Jack Christopher Landy ◽  
Julienne Christine Stroeve ◽  
...  

2016 ◽  
Vol 48 (1) ◽  
pp. 17-28 ◽  
Author(s):  
Tadeusz Pastusiak

Abstract The research on the ice cover of waterways, rivers, lakes, seas and oceans by satellite remote sensing methods began at the end of the twentieth century. There was a lot of data sources in diverse file formats. It has not yet carried out a comparative assessment of their usefulness. A synthetic indicator of the quality of data sources binding maps resolution, file publication, time delay and the functionality for the user was developed in the research process. It reflects well a usefulness of maps and allows to compare them. Qualitative differences of map content have relatively little impact on the overall assessment of the data sources. Resolution of map is generally acceptable. Actuality has the greatest impact on the map content quality for the current vessel’s voyage planning in ice. The highest quality of all studied sources have the regional maps in GIF format issued by the NWS / NOAA, general maps of the Arctic Ocean in NetCDF format issued by the OSI SAF and the general maps of the Arctic Ocean in GRIB-2 format issued by the NCEP / NOAA. Among them are maps containing information on the quality of presented parameter. The leader among the map containing all three of the basic characteristics of ice cover (ice concentration, ice thickness and ice floe size) are vector maps in GML format. They are the new standard of electronic vector maps for the navigation of ships in ice. Publishing of ice cover maps in the standard electronic map format S-411 for navigation of vessels in ice adopted by the International Hydrographic Organization is advisable in case is planned to launch commercial navigation on the lagoons, rivers and canals. The wide availability of and exchange of information on the state of ice cover on rivers, lakes, estuaries and bays, which are used exclusively for water sports, ice sports and ice fishing is possible using handheld mobile phones, smartphones and tablets.


2014 ◽  
Vol 44 (5) ◽  
pp. 1329-1353 ◽  
Author(s):  
Michel Tsamados ◽  
Daniel L. Feltham ◽  
David Schroeder ◽  
Daniela Flocco ◽  
Sinead L. Farrell ◽  
...  

Abstract Over Arctic sea ice, pressure ridges and floe and melt pond edges all introduce discrete obstructions to the flow of air or water past the ice and are a source of form drag. In current climate models form drag is only accounted for by tuning the air–ice and ice–ocean drag coefficients, that is, by effectively altering the roughness length in a surface drag parameterization. The existing approach of the skin drag parameter tuning is poorly constrained by observations and fails to describe correctly the physics associated with the air–ice and ocean–ice drag. Here, the authors combine recent theoretical developments to deduce the total neutral form drag coefficients from properties of the ice cover such as ice concentration, vertical extent and area of the ridges, freeboard and floe draft, and the size of floes and melt ponds. The drag coefficients are incorporated into the Los Alamos Sea Ice Model (CICE) and show the influence of the new drag parameterization on the motion and state of the ice cover, with the most noticeable being a depletion of sea ice over the west boundary of the Arctic Ocean and over the Beaufort Sea. The new parameterization allows the drag coefficients to be coupled to the sea ice state and therefore to evolve spatially and temporally. It is found that the range of values predicted for the drag coefficients agree with the range of values measured in several regions of the Arctic. Finally, the implications of the new form drag formulation for the spinup or spindown of the Arctic Ocean are discussed.


2010 ◽  
pp. 361-390
Author(s):  
Erland M. Schulson ◽  
Paul Duval

Sign in / Sign up

Export Citation Format

Share Document