drag coefficients
Recently Published Documents


TOTAL DOCUMENTS

529
(FIVE YEARS 80)

H-INDEX

41
(FIVE YEARS 3)

2022 ◽  
Vol 8 ◽  
Author(s):  
Kiernan Kelty ◽  
Tori Tomiczek ◽  
Daniel Thomas Cox ◽  
Pedro Lomonaco ◽  
William Mitchell

This study investigates the potential of a Rhizophora mangrove forest of moderate cross-shore thickness to attenuate wave heights using an idealized prototype-scale physical model constructed in a 104 m long wave flume. An 18 m long cross-shore transect of an idealized red mangrove forest based on the trunk-prop root system was constructed in the flume. Two cases with forest densities of 0.75 and 0.375 stems/m2 and a third baseline case with no mangroves were considered. LiDAR was used to quantify the projected area per unit height and to estimate the effective diameter of the system. The methodology was accurate to within 2% of the known stem diameters and 10% of the known prop root diameters. Random and regular wave conditions seaward, throughout, and inland of the forest were measured to determine wave height decay rates and drag coefficients for relative water depths ranging 0.36 to 1.44. Wave height decay rates ranged 0.008–0.021 m–1 for the high-density cases and 0.004–0.010 m–1 for the low-density cases and were found to be a function of water depth. Doubling the forest density increased the decay rate by a factor two, consistent with previous studies for other types of emergent vegetation. Drag coefficients ranged 0.4–3.8, and were found to be dependent on the Reynolds number. Uncertainty in the estimates of the drag coefficient due to the measured projected area and measured wave attenuation was quantified and found to have average combined standard deviations of 0.58 and 0.56 for random and regular waves, respectively. Two previous reduced-scale studies of wave attenuation by mangroves compared well with the present study when their Reynolds numbers were re-scaled by λ3/2 where λ is the prototype-to-model geometric scale ratio. Using the combined data sets, an equation is proposed to estimate the drag coefficient for a Rhizophora mangrove forest: CD = 0.6 + 3e04/ReDBH with an uncertainty of 0.69 over the range 5e03 < ReDBH < 1.9e05, where ReDBH is based on the tree diameter at breast height. These results may improve engineering guidance for the use of mangroves and other emergent vegetation in coastal wave attenuation.


2021 ◽  
Vol 13 (2) ◽  
pp. 68-78
Author(s):  
عباس فاضل محمود ◽  

This paper is dealing with an experimental study to show the influence of the geometric characteristics of the vortex generators VG son the thickness of the boundary layer (∂) and drag coefficients (CD) of the flat plate. Vortex generators work effectively on medium and high angles of attack, since they are "hidden" under the boundary layer and practically ineffective at low angles. The height of VGs relative to the thickness of the boundary layer enables us to study the efficacy of VGs in delaying boundary layer separation. The distance between two VGs also has an effect on the boundary layer if we take into account the interference between two pairs of VGs. The effect of the changing in (h- the height of vortex generator, d- the average distance between tow vortex generators) on the thickness of the flat plate boundary layer and the drag coefficients has been studied for triangular vortex generator. The measurements of the vortex generator have been changed to determine the optimum boundary layer thickness and the change in drag coefficients. An experiment was done at an average free stream velocity, (U∞,) of 28 m/s. The experiment was conducted in the wind tunnel UTAD-2 University (NAU) Kiev, Ukraine.


2021 ◽  
Vol 13 (12) ◽  
pp. 168781402110668
Author(s):  
Haichao Zhou ◽  
Qingyun Chen ◽  
Runzhi Qin ◽  
Lingxin Zhang ◽  
Huiyun Li

As vehicle speed increases, the aerodynamic drag reduction becomes increasingly significant. The aim of this paper is to find out the effects of the wheelhouse shapes on the aerodynamics of an Ahmed body with a 35 slant angle. In this paper, based on the detached-eddy simulation method, the effects of the three classic different wheelhouse on the aerodynamic performance and near wake of the Ahmed body are presented. The mesh resolution and methodology are validated against the published test results. The results show that the front wheelhouse has a significant impact on the aerodynamic performance of the Ahmed body, leading to different aerodynamic drag forces and flow fields. Enlarging the wheelhouse cavity volume could result in a gradual increase in aerodynamic drag coefficients, the ratio of the wheelhouse cavity volume increased by 2.9% and 9.8%, the drag coefficients increased by 2.5% and 4.5% respectively. The increase in aerodynamic drag was primarily caused by flow separation in the large cavity volume wheelhouse.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
M. R. Nived ◽  
Bandi Sai Mukesh ◽  
Sai Saketha Chandra Athkuri ◽  
Vinayak Eswaran

Purpose This paper aims to conduct, a detailed investigation of various Reynolds averaged Navier–Stokes (RANS) models to study their performance in attached and separated flows. The turbulent flow over two airfoils, namely, National Advisory Committee for Aeronautics (NACA)-0012 and National Aeronautics and Space Administration (NASA) MS(1)-0317 with a static stall setup at a Reynolds number of 6 million, is chosen to investigate these models. The pre-stall and post-stall regions, which are in the range of angles of attack 0°–20°, are simulated. Design/methodology/approach RANS turbulence models with the Boussinesq approximation are the most commonly used cost-effective models for engineering flows. Four RANS models are considered to predict the static stall of two airfoils: Spalart–Allmaras (SA), Menter’s k – ω shear stress transport (SST), k – kL and SA-Bas Cakmakcioglu modified (BCM) transition model. All the simulations are performed on an in-house unstructured-grid compressible flow solver. Findings All the turbulence models considered predicted the lift and drag coefficients in good agreement with experimental data for both airfoils in the attached pre-stall region. For the NACA-0012 airfoil, all models except the SA-BCM over-predicted the stall angle by 2°, whereas SA-BCM failed to predict stall. For the NASA MS(1)-0317 airfoil, all models predicted the lift and drag coefficients accurately for attached flow. But the first three models showed even further delayed stall, whereas SA-BCM again did not predict stall. Originality/value The numerical results at high Re obtained from this work, especially that of the NASA MS(1)-0317, are new to the literature in the knowledge of the authors. This paper highlights the inability of RANS models to predict the stall phenomenon and suggests a need for improvement in modeling flow physics in near- and post-stall flows.


2021 ◽  
Author(s):  
Mohammadreza Saber Ashkezari ◽  
Ali Mohammad ◽  
Masoud Darbandi ◽  
Gerry E. Schneider

2021 ◽  
Vol 13 (20) ◽  
pp. 11399
Author(s):  
Igor Gómez ◽  
Sergio Molina ◽  
Juan José Galiana-Merino ◽  
María José Estrela ◽  
Vicente Caselles

The current study evaluates the ability of the Weather Research and Forecasting Model (WRF) to forecast surface energy fluxes over a region in Eastern Spain. Focusing on the sensitivity of the model to Land Surface Model (LSM) parameterizations, we compare the simulations provided by the original Noah LSM and the Noah LSM with multiple physics options (Noah-MP). Furthermore, we assess the WRF sensitivity to different Noah-MP physics schemes, namely the calculation of canopy stomatal resistance (OPT_CRS), the soil moisture factor for stomatal resistance (OPT_BTR), and the surface layer drag coefficient (OPT_SFC). It has been found that these physics options strongly affect the energy partitioning at the land surface in short-time scale simulations. Aside from in situ observations, we use the Meteosat Second Generation (MSG) Spinning Enhanced Visible and Infrared Imager (SEVIRI) sensor to assess the Land Surface Temperature (LST) field simulated by WRF. Regarding multiple options in Noah-MP, WRF has been configured using three distinct soil moisture factors to control stomatal resistance (β factor) available in Noah-MP (Noah, CLM, and SSiB-types), two canopy stomatal resistance (Ball–Berry and Jarvis), and two options for surface layer drag coefficients (Monin–Obukhov and Chen97 scheme). Considering the β factor schemes, CLM and SSiB-type β factors simulate very low values of the latent heat flux while increasing the sensible heat flux. This result has been obtained independently of the canopy stomatal resistance scheme used. Additionally, the surface skin temperature simulated by Noah-MP is colder than that obtained by the original Noah LSM. This result is also highlighted when the simulated surface skin temperature is compared to the MSG-SEVIRI LST product. The largest differences between the satellite data and the mesoscale simulations are produced using the Noah-MP configurations run with the Monin–Obukhov parameterization for surface layer drag coefficients. In contrast, the Chen97 scheme shows larger surface skin temperatures than Monin–Obukhov, but at the expense of a decrease in the simulated sensible heat fluxes. In this regard, the ground heat flux and the net radiation play a key role in the simulation results.


2021 ◽  
Vol 9 (10) ◽  
pp. 1135
Author(s):  
Junli Xu ◽  
Yuling Nie ◽  
Kai Ma ◽  
Wenqi Shi ◽  
Xianqing Lv

The wind stress drag coefficient plays an important role in storm surge models. This study reveals the influences of wind stress drag coefficients, which are given in form of formulas and inverted by the data assimilation method, on the storm surge levels in the Bohai Sea, Yellow Sea, and East China Sea during Typhoon 7008. In the process of data assimilation, the drag coefficient is based on the linear expression Cd = (a + b × U10) × 10−3 (generally speaking, a and b are empirical parameters determined by observed data). The results showed that the performance of the data assimilation method was far superior to those of drag coefficient formulas. Additionally, the simulated storm surge levels obviously changed in the neighborhood of typhoon eye. Furthermore, the effect of initial values of a and b in the Cd expression on the storm surge levels was also investigated when employing the data assimilation method. The results indicated that the simulation of storm surge level was the closest to the observation when a and b were simultaneously equal to zero, whereas the simulations had slight differences when the initial values of a and b were separately equal to the drag coefficients from the work of Smith, Wu, and Geernaert et al. Therefore, we should choose appropriate initial values for a and b by using the data assimilation method. As a whole, the data assimilation method is much better than drag coefficient parameterization formulas in the simulation of storm surges.


2021 ◽  
Vol 238 ◽  
pp. 109701
Author(s):  
Xu Liang ◽  
Zhen Liu ◽  
Decai Huang ◽  
Tao Wang ◽  
Chizhong Wang

2021 ◽  
Vol 15 (3) ◽  
pp. 8228-8240
Author(s):  
H. Abdul-Rahman ◽  
H. Moria ◽  
Mohammad Rasidi Mohammad Rasani

Aerodynamics of vehicles account for nearly 80% of fuel losses on the road. Today, the use of the Intelligent Transport System (ITS) allows vehicles to be guided at a distance close to each other and has been shown to help reduce the drag coefficients of the vehicles involved. In this article, the aim is to investigate the effect of distances between a three car platoons, to their drag and lift coefficients, using computational fluid dynamics. To that end, a computational fluid dynamics (CFD) simulation was first performed on a single case and platoon of two Ahmed car models using the STAR-CCM+ software, for validation with previous experimental studies. Significant drop in drag coefficients were observed on platoon models compared to a single model. Comparison between the k-w and k-e turbulence models for a two car platoon found that the k-w model more closely approximate the experimental results with errors of only 8.66% compared to 21.14% by k-e turbulence model. Further studies were undertaken to study the effects of various car gaps (0.5L, 1.0L and 1.5L; L = length of the car) to the aerodynamics of a three-car platoon using CFD simulation. Simulation results show that the lowest drag coefficient that impacts on vehicle fuel savings varies depending on the car's position. For the front car, the lowest drag coefficient (CD) can be seen for car gaps corresponding to X1 = 0.5L and X2 = 0.5L, where CD = 0.1217, while its lift coefficient (CL) was 0.0366 (X1 and X2 denoting first to second and second to third car distance respectively). For the middle car, the lowest drag coefficient occurred when X1 = 1.5L and X2 = 0.5L, which is 0.1397. The lift coefficient for this car was -0.0611. Meanwhile, for the last car, the lowest drag coefficient was observed when X1 = 0.5L and X2 = 1.5L, i.e. CD = 0.263. The lift coefficient for this car was 0.0452. In this study, the lowest drag coefficient yields the lowest lift coefficient. The study also found that for even X1 and X2 spacings, the drag coefficient increased steadily from the front to the last car, while the use of different spacings were found to decrease drag coefficient of the rear car compared to the front car and had a positive impact on platoon driving and fuel-saving.


Sign in / Sign up

Export Citation Format

Share Document