Simulating the Ion Precipitation from the Inner Magnetosphere by H-band and He-band Electro Magnetic Ion Cyclotron (EMIC) Waves

2020 ◽  
Author(s):  
Shreedevi P R ◽  
Yiqun Yu ◽  
Binbin Ni ◽  
Anthony Saikin ◽  
Vania K Jordanova
2021 ◽  
Author(s):  
Justin Lee ◽  
Drew Turner ◽  
Sarah Vines ◽  
Robert Allen ◽  
Sergio Toledo-Redondo

<p>Although thorough characterization of magnetospheric ion composition is rare for EMIC wave studies, convective processes that occur more frequently in Earth’s outer magnetosphere have allowed the Magnetospheric Multiscale (MMS) satellites to make direct measurements of the cold and hot plasma composition during EMIC wave activity. We will present an observation and linear wave modeling case study conducted on EMIC waves observed during a perturbed activity period in the outer dusk-side magnetosphere. During the two intervals investigated for the case study, the MMS satellites made direct measurements of cold plasmaspheric plasma in addition to multiple hot ion components at the same time as EMIC wave emissions were observed. Applying the in-situ plasma composition data to wave modeling, we find that wave growth rate is impacted by the complex interactions between the cold as well as the hot ion components and ambient plasma conditions. In addition, we observe that linear wave properties (unstable wave numbers and band structure) can significantly evolve with changes in cold and hot ion composition. Although the modeling showed the presence of dense cold ions can broaden the range of unstable wave numbers, consistent with previous work, the hot heavy ions that were more abundant nearer storm main phase could limit the growth of EMIC waves to smaller wave numbers. In the inner magnetosphere, where higher cold ion density is expected, the ring current heavy ions could also be more intense near storm-time, possibly resulting in conditions that limit the interactions of EMIC waves with trapped radiation belt electrons to multi-MeV energies. Additional investigation when direct measurements of cold and hot plasma composition are available could improve understanding of EMIC waves and their interactions with trapped energetic particles in the inner magnetosphere.</p>


Space Weather ◽  
2014 ◽  
Vol 12 (6) ◽  
pp. 354-367 ◽  
Author(s):  
M. de Soria-Santacruz ◽  
M. Martinez-Sanchez ◽  
Y. Y. Shprits

2020 ◽  
Vol 125 (4) ◽  
Author(s):  
K. Sigsbee ◽  
C. A. Kletzing ◽  
J. B. Faden ◽  
A. N. Jaynes ◽  
G. D. Reeves ◽  
...  

2019 ◽  
Vol 46 (12) ◽  
pp. 6258-6267 ◽  
Author(s):  
Q. Ma ◽  
W. Li ◽  
C. Yue ◽  
R. M. Thorne ◽  
J. Bortnik ◽  
...  

2019 ◽  
Vol 26 (4) ◽  
pp. 042903 ◽  
Author(s):  
Bin Wang ◽  
Pengyuan Li ◽  
Jian Huang ◽  
Bing Zhang

2020 ◽  
Author(s):  
Paul Loto'aniu

<p>The GOES-16 spacecraft, launched in November 2016, is the first of the GOES-R series next generation NOAA weather satellites. The spacecraft has a similar suite of space weather instruments to previous GOES satellites but with improved magnetometer sampling rate and wider energy range of particle flux observations. Presented are observations of simultaneously occurring Pc 4/5 ULF waves and electromagnetic ion cyclotron (EMIC) waves with a discussion on the relationship between the two wave modes including possible generation mechanisms. The waves were also observed in the particle data and we discuss both adiabatic and non-adiabatic wave-particle effects. Relativistic electron fluxes showed strong adiabatic motion with the magnetic field ULF waves. Estimates of Pc 4/5 ULF wave m-numbers suggest they were high, while ring current energy ion fluxes showed ULF variations with non-zero phasing relative to magnetic field ULF wave. This suggests ULF wave drift resonance with ring current ions. In one event we observed EMIC variations in the ion fluxes around energies that can drift resonate with simultaneously observed Pc 5 waves, suggesting that one particle population may be responsible for generating and/or modifying both observed Pc 5 and EMIC waves. ULF variations were also observed in electron/ion fluxes at lower energies down to 30 eV. We looked into ULF bounce resonance with 30 eV electrons, but the resonance condition did not match the observations. We will also discuss future plans to expand this study of ULF waves and wave-particle interactions using the two newest GOES satellites.</p>


Sign in / Sign up

Export Citation Format

Share Document