triggering process
Recently Published Documents


TOTAL DOCUMENTS

58
(FIVE YEARS 23)

H-INDEX

11
(FIVE YEARS 2)

2022 ◽  
Vol 172 ◽  
pp. 107347
Author(s):  
Haidong Liu ◽  
Erlei Zhao ◽  
Deqi Chen ◽  
Jiang Qin ◽  
Peigang Yan ◽  
...  

2021 ◽  
Author(s):  
Xueyun Xie ◽  
HaiPing Yu ◽  
Yang Zhong

Abstract Electric-pulse triggered energetic materials forming (ETEF) is a high-speed manufacturing process, which utilizes the chemical energy released by energetic materials (EMs) triggered by underwater wire discharge to plastically shape metals. The understanding of ETEF is not comprehensive, especially in the research on the discharge characteristics of energetic materials triggered by metal wires and the deformation process of metal sheets. In this paper, the above two problems were studied by means of experiment and numerical simulation. For the pulse discharge characteristics, the peak values of voltage and current were reduced during the triggering process of energetic materials. The triggering energy consumption of energetic materials was quantified to be about 200J. The matching parameters of different capacitor-voltage devices had no effect on triggering the energy release of energetic materials, so the electric pulse generator only played a triggering role on energetic materials. Compared with the quasi-static specimen with the same bulging height, the maximum major strain and thinning rate of the bulged specimen under ETEF condition were significantly reduced, and the deformation uniformity and strain distribution of the specimen were improved. The simulation results showed that the addition of energetic materials significantly improved the plastic strain energy of the blank. The deformation of the blank in ETEF can be divided into two stages: the initial chemical energy action stage and the inertia action stage. The bulging height of sheet metal increased by nearly 301% in inertia action stage, accounting for 80% of the total deformation time, and the effective plastic strain distribution was more uniform.


Membranes ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 943
Author(s):  
Ane Elexpe ◽  
Nerea Nieto ◽  
Claudia Fernández-Cuétara ◽  
Celtia Domínguez-Fernández ◽  
Teresa Morera-Herreras ◽  
...  

The production of reactive oxygen species (ROS) increases considerably in situations of cellular stress, inducing lipid peroxidation and multiple alterations in proteins and nucleic acids. However, sensitivity to oxidative damage varies between organs and tissues depending on the triggering process. Certain drugs used in the treatment of diverse diseases such as malaria have side effects similar to those produced by oxidative damage, although no specific study has been conducted. For this purpose, cell membrane microarrays were developed and the superoxide production evoked by the mitochondrial activity was assayed in the presence of specific inhibitors: rotenone, antimycin A and azide. Once the protocol was set up on cell membrane isolated from rat brain areas, the effect of six antimalarial drugs (atovaquone, quinidine, doxycycline, mefloquine, artemisinin, and tafenoquine) and two essential oils (Rosmarinus officinalis and Origanum majoricum) were evaluated in multiple human samples. The basal activity was different depending on the type of tissue, the liver, jejunum and adrenal gland being the ones with the highest amount of superoxide. The antimalarial drugs studied showed specific behavior according to the type of human tissue analyzed, with atovaquone and quinidine producing the highest percentage of superoxide formation, and doxycycline the lowest. In conclusion, the analysis of superoxide production evaluated in cell membranes of a collection of human tissues allowed for the characterization of the safety profile of these antimalarial drugs against toxicity mediated by oxidative stress.


AIP Advances ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 115113
Author(s):  
Zhenghao He ◽  
Yuchen Liu ◽  
Yinan Xin

2021 ◽  
Author(s):  
Yuya Fujiwara ◽  
Takeshi Nogi ◽  
Yoshiharu Omura

Abstract We perform an electromagnetic particle simulation of triggered emissions in a uniform magnetic field for understanding of nonlinear wave-particle interaction in the vicinity of the magnetic equator. A finite length of a whistler-mode triggering wave packet with a constant frequency is injected by oscillating an external current at the equator. We find that the first subpacket of rising-tone triggered emissions is generated after termination of the injection of the triggering wave in the homogeneous magnetic field. By analyzing resonant currents and resonant electron dynamics in the simulation, we find that the formation of an electron hole in a velocity phase space forms resonant currents, and the currents cause wave amplification and frequency increase. As the very initial stage of the generation process, phase-bunching occurs at the wavefront of the triggering wave. The phase-bunching is caused by the rotation of electrons in the velocity phase space because of the gradient of the distribution function in the parallel velocity. The phase-bunched untrapped electrons are scattered to the loss cone giving energy to the electromagnetic waves, while the electrons in the low density region are trapped by the wave potential, forming an electron hole. The time scale of the initial formation process of the electron hole is related to the duration time of the triggering wave necessary for generation of triggered emissions. The duration time is determined by the interaction time. For the generation of triggered emissions, the interaction time is more than 1/4 of the nonlinear trapping period in the present simulation.


Author(s):  
Per Magnus Mæhle ◽  
Senada Hajdarevic ◽  
Erna Håland ◽  
Rikke Aarhus ◽  
Sigbjørn Smeland ◽  
...  

2021 ◽  
Author(s):  
Stephen Hicks ◽  
Saskia Goes ◽  
Alexander Whittaker ◽  
Peter Stafford

Induced earthquake sequences are typically interpreted through causal triggering mechanisms. However, studies of causality rarely consider large regions and why some regions experiencing similar anthropogenic activities remain largely aseismic. Therefore, it can be difficult to forecast seismic hazard at a regional scale. In contrast, multivariate statistical methods allow us to find the combinations of factors that correlate best with seismicity, which can help form the basis of hypotheses that can be subsequently tested with physical models. Such a statistical approach is particularly important for large regions with newly-emergent seismicity comprising multiple distinct clusters and multi-faceted industrial operations. Recent induced seismicity in the Permian Basin provides an excellent test-bed for multivariate statistical analyses because the main causal industrial and geological factors driving earthquakes in the region remain highly debated. Here, we use logistic regression to retrospectively predict the spatial variation of seismicity across the western Permian Basin. We reproduce the broad distribution of seismicity using a combination of both industrial and geological factors. Our model shows that hydraulic fracturing and/or hydrocarbon production from the Wolfcamp Shale is the strongest predictor of seismicity, although the physical triggering process is unclear due to uncertain earthquake depths. We also find that the proximity to neotectonic faults west of the Delaware Basin is another important factor that contributes to induced seismicity. This higher tectonic stressing, together with a poor correlation between seismicity and large-volume deep salt-water disposal wells indicates a very different mechanism of induced seismicity compared to that in Oklahoma.


2021 ◽  
Author(s):  
Satyaraj D ◽  
Bhanumathi V

Abstract With the persistent scaling of semiconductor technology, the embedded multi-processor platforms lifetime reliability has been the primary concern for the industry. The advancements in technology permit several microprocessors integration, dedicated digital hardware, and at times mixed-signal circuits on a single silicon die, specifically multi-processor system-on-a-chip (MPSoC). In this paper, the design and analysis of CMOS based MPSoC is made. A CMOS based MPSoC is designed with 45nm technology. In this design, ADC converter is used in which 10-bit data is given as input, and are converted into digital data. A double feedback edge triggered flip flop is designed. The implementation of flip flop, based on both feedback and triggering process, is more effective in the elimination of error occurrence. Power Gating (PG) technique is proposed which exploits the stacking effect to achieve high energy efficiency. Binary controlled stacked SRAM cell, based on a parallel cross-coupling feedback controller, is implemented to reduce the leakage loss and ground bouncing noise. An inverter, based on NMOS and CMOS, is used for the inverting process. The input voltage of 5v is given and is varied. Then, a 2-bit counter is employed, which is responsible for counting down or counting up. The counter should count down if the signal is high. The counter should count up, if the signal is low. Thus, this design will be helpful in the implementation of compact processing system which may also be employed for many real-time applications where there is a need of compact device. The benefits of this multi processors integration will be helpful in speeding the process thereby reducing the leakage power loss, power consumption, delay factor and so on. The analysis of performance is carried out using CMOS based Tanner EDA, and the outcomes are represented.


2021 ◽  
Author(s):  
Satyaraj D ◽  
Bhanumathi V

Abstract With the persistent scaling of semiconductor technology, the embedded multi-processor platforms lifetime reliability has been the primary concern for the industry. The advancements in technology permit several microprocessors integration, dedicated digital hardware, and at times mixed-signal circuits on a single silicon die, specifically multi-processor system-on-a-chip (MPSoC). In this paper, the design and analysis of CMOS based MPSoC is made. A CMOS based MPSoC is designed with 45nm technology. In this design, ADC converter is used in which 10-bit data is given as input, and are converted into digital data. A double feedback edge triggered flip flop is designed. The implementation of flip flop, based on both feedback and triggering process, is more effective in the elimination of error occurrence. Power Gating (PG) technique is proposed which exploits the stacking effect to achieve high energy efficiency. Binary controlled stacked SRAM cell, based on a parallel cross-coupling feedback controller, is implemented to reduce the leakage loss and ground bouncing noise. An inverter, based on NMOS and CMOS, is used for the inverting process. The input voltage of 5v is given and is varied. Then, a 2-bit counter is employed, which is responsible for counting down or counting up. The counter should count down if the signal is high. The counter should count up, if the signal is low. Thus, this design will be helpful in the implementation of compact processing system which may also be employed for many real-time applications where there is a need of compact device. The benefits of this multi processors integration will be helpful in speeding the process thereby reducing the leakage power loss, power consumption, delay factor and so on. The analysis of performance is carried out using CMOS based Tanner EDA, and the outcomes are represented.


Sign in / Sign up

Export Citation Format

Share Document