scholarly journals Estuarine Circulation, Mixing, and Residence Times in the Salish Sea

2020 ◽  
Author(s):  
Parker MacCready ◽  
Ryan M. McCabe ◽  
Samantha A. Siedlecki ◽  
Marvin Lorenz ◽  
Sarah Nicole Giddings ◽  
...  
Author(s):  
P. MacCready ◽  
R. M. McCabe ◽  
S. A. Siedlecki ◽  
M. Lorenz ◽  
S. N. Giddings ◽  
...  

2020 ◽  
Author(s):  
Parker MacCready ◽  
Ryan M. McCabe ◽  
Samantha A. Siedlecki ◽  
Marvin Lorenz ◽  
Sarah Nicole Giddings ◽  
...  

2006 ◽  
Vol 45 (03) ◽  
pp. 134-138 ◽  
Author(s):  
T. Kull ◽  
N. M. Blumstein ◽  
D. Bunjes ◽  
B. Neumaier ◽  
A. K. Buck ◽  
...  

SummaryAim: For the therapeutic application of radiopharmaceuticals the activity is determined on an individual basis. Here we investigated the accuracy for a simplified assessment of the residence times for a 188Re-labelled anti-CD66 monoclonal antibody. Patients, methods: For 49 patients with high risk leukaemia (24 men, 25 women, age: 44 ± 12 years) the residence times were determined for the injected 188Re-labelled anti-CD66 antibodies (1.3 ± 0.4 GBq, 5–7 GBq/mg protein, >95% 188Re bound to the antibody) based on 5 measurements (1.5, 3, 20, 26, and 44 h p.i.) using planar conjugate view gamma camera images (complete method). In a simplified method the residence times were calculated based on a single measurement 3 h p.i. Results: The residence times for kidneys, liver, red bone marrow, spleen and remainder of body for the complete method were 0.4 ± 0.2 h, 1.9 ± 0.8 h, 7.8 ± 2.1 h, 0.6 ± 0.3 h and 8.6 ± 2.1 h, respectively. For all organs a linear correlation exists between the residence times of the complete method and the simplified method with the slopes (correlation coefficients R > 0.89) of 0.89, 0.99, 1.23, 1.13 and 1.09 for kidneys, liver, red bone marrow, spleen and remainder of body, respectively. Conclusion: The proposed approach allows reliable prediction of biokinetics of 188Re-labelled anti-CD66 monoclonal antibody biodistribution with a single study. Efficient pretherapeutic estimation of organ absorbed dose may be possible, provided that a more stable anti-CD66 antibody preparation is available.


1998 ◽  
Vol 37 (4-5) ◽  
pp. 527-530 ◽  
Author(s):  
Hilde Lemmer ◽  
George Lind ◽  
Margit Schade ◽  
Birgit Ziegelmayer

Non-filamentous hydrophobic scum bacteria were isolated from scumming wastewater treatment plants (WWTP) by means of adhesion to hydrocarbons. They were characterized with respect to taxonomy, substrate preferences, cell surface hydrophobicity, and emulsification capability. Their role during flotation events is discussed. Rhodococci are selected by hydrolysable substrates and contribute to flotation both by cell surface hydrophobicity and emulsifying activity at long mean cell residence times (MCRT). Saprophytic Acinetobacter strains are able to promote flotation by hydrophobicity and producing emulsifying agents under conditions when hydrophobic substrates are predominant. Hydrogenophaga and Acidovorax species as well as members of the Cytophaga/Flavobacterium group are prone to proliferate under low loading conditions and contribute to flotation mainly by emulsification.


Sign in / Sign up

Export Citation Format

Share Document