wastewater treatment plants
Recently Published Documents


TOTAL DOCUMENTS

5102
(FIVE YEARS 2359)

H-INDEX

117
(FIVE YEARS 41)

2022 ◽  
Vol 115 ◽  
pp. 341-349
Author(s):  
Bing Zhang ◽  
Ting Yang ◽  
Chenxiang Sun ◽  
Xianghua Wen

2022 ◽  
Vol 110 ◽  
pp. 35-44
Author(s):  
Mohammed Alharbi ◽  
Pei-Ying Hong ◽  
Taous-Meriem Laleg-Kirati

2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Rouzbeh Nazari ◽  
Haralambos Vasiliadis ◽  
Maryam Karimi ◽  
Md Golam Rabbani Fahad ◽  
Stanley Simon ◽  
...  

2022 ◽  
Vol 9 ◽  
Author(s):  
Viktor Sebestyén ◽  
Tímea Czvetkó ◽  
János Abonyi

We developed a digital water management toolkit to evaluate the importance of the connections between water bodies and the impacts caused by pollution sources. By representing water bodies in a topological network, the relationship between point loads and basic water quality parameters is examined as a labelled network. The labels are defined based on the classification of the water bodies and pollution sources. The analysis of the topology of the network can provide information on how the possible paths of the surface water network influence the water quality. The extracted information can be used to develop a monitoring- and evidence-based decision support system. The methodological development is presented through the analysis of the physical-chemical parameters of all surface water bodies in Hungary, using the emissions of industrial plants and wastewater treatment plants. Changes in water quality are comprehensively assessed based on the water quality data recorded over the past 10 years. The results illustrate that the developed method can identify critical surface water bodies where the impact of local pollution sources is more significant. One hundred six critical water bodies have been identified, where special attention should be given to water quality improvement.


Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 225
Author(s):  
Liam J. Reynolds ◽  
Laura Sala-Comorera ◽  
Mohd Faheem Khan ◽  
Niamh A. Martin ◽  
Megan Whitty ◽  
...  

Wastewater surveillance is a cost-effective tool for monitoring SARS-CoV-2 transmission in a community. However, challenges remain with regard to interpretating such studies, not least in how to compare SARS-CoV-2 levels between different-sized wastewater treatment plants. Viral faecal indicators, including crAssphage and pepper mild mottle virus, have been proposed as population biomarkers to normalise SARS-CoV-2 levels in wastewater. However, as these indicators exhibit variability between individuals and may not be excreted by everyone, their utility as population biomarkers may be limited. Coprostanol, meanwhile, is a bacterial metabolite of cholesterol which is excreted by all individuals. In this study, composite influent samples were collected from a large- and medium-sized wastewater treatment plant in Dublin, Ireland and SARS-CoV-2 N1, crAssphage, pepper mild mottle virus, HF183 and coprostanol levels were determined. SARS-CoV-2 N1 RNA was detected and quantified in all samples from both treatment plants. Regardless of treatment plant size, coprostanol levels exhibited the lowest variation in composite influent samples, while crAssphage exhibited the greatest variation. Moreover, the strongest correlations were observed between SARS-CoV-2 levels and national and Dublin COVID-19 cases when levels were normalised to coprostanol. This work demonstrates the usefulness of coprostanol as a population biomarker for wastewater surveillance studies.


2022 ◽  
Vol 10 (1) ◽  
pp. 151
Author(s):  
Izabela Mujakić ◽  
Kasia Piwosz ◽  
Michal Koblížek

Bacteria are an important part of every ecosystem that they inhabit on Earth. Environmental microbiologists usually focus on a few dominant bacterial groups, neglecting less abundant ones, which collectively make up most of the microbial diversity. One of such less-studied phyla is Gemmatimonadota. Currently, the phylum contains only six cultured species. However, data from culture-independent studies indicate that members of Gemmatimonadota are common in diverse habitats. They are abundant in soils, where they seem to be frequently associated with plants and the rhizosphere. Moreover, Gemmatimonadota were found in aquatic environments, such as freshwaters, wastewater treatment plants, biofilms, and sediments. An important discovery was the identification of purple bacterial reaction centers and anoxygenic photosynthesis in this phylum, genes for which were likely acquired via horizontal gene transfer. So far, the capacity for anoxygenic photosynthesis has been described for two cultured species: Gemmatimonas phototrophica and Gemmatimonas groenlandica. Moreover, analyses of metagenome-assembled genomes indicate that it is also common in uncultured lineages of Gemmatimonadota. This review summarizes the current knowledge about this understudied bacterial phylum with an emphasis on its environmental distribution.


PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0261306
Author(s):  
Yan Shu ◽  
Donghui Liang

The effect of tetracycline (TC) on nitrogen removal in wastewater treatment plants has become a new problem. This study investigated the effects of TC on nitrogen removal using a Moving Bed Biofilm Reactor system. The results showed that there was no significant effect on nitrogen removal performance when the concentration of TC was 5 mg/L, and that the total nitrogen (TN) removal efficiency could reach 75–77%. However, when the concentration of TC increased to 10 mg/L, the denitrification performance was affected and the TN removal efficiency decreased to 58%. The abundance of denitrifying bacteria such as those in the genus Thauera decreased, and TC-resistant bacteria gradually became dominant. At a TC concentration of 10 mg/L, there were also increases and decreases, respectively, in the abundance of resistance and denitrification functional genes. The inhibitory effect of TC on denitrification was achieved mainly by the inhibition of nitrite-reducing bacteria.


Aerobiologia ◽  
2022 ◽  
Author(s):  
Hamza Mbareche ◽  
Marc Veillette ◽  
Vanessa Dion-Dupont ◽  
Jacques Lavoie ◽  
Caroline Duchaine

Sign in / Sign up

Export Citation Format

Share Document