Minimizing secrecy outage probability in D2D-enabled cellular networks: Access control with power optimization

2017 ◽  
Vol 29 (1) ◽  
pp. e3231 ◽  
Author(s):  
Yajun Chen ◽  
Xinsheng Ji ◽  
Kaizhi Huang ◽  
Bin Li ◽  
Xiaolei Kang
2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Liwei Tao ◽  
Weiwei Yang ◽  
Yueming Cai ◽  
Dechuan Chen

We investigate the secrecy performance in large-scale cellular networks, where both Base Stations (BSs) and eavesdroppers follow independent and different homogeneous Poisson point processes (PPPs). Based on the distances between the BS and user, the intended user selects the nearest BS as serving BS to transmit the confidential information. We first derive closed-formed expressions of secrecy outage probability and average secrecy rate of a single-antenna system for both noncooperative and cooperative eavesdroppers scenarios. Then, to further improve the secrecy performance through additional spatial degrees of freedom, the above analyses generalize to the multiantenna scenario, where BSs employ the transmit antenna selection (TAS) scheme. Finally, the results show the small-scale fading has a considerable effect on the secrecy performance in certain density of eavesdroppers and small path loss exponent environment, and when the interference caused by BS is considered, the secrecy performance will be reduced. Moreover, the gap of secrecy performance between noncooperative and cooperative eavesdroppers cases is nearly invariable as the number of antennas increases.


2021 ◽  
Author(s):  
Shu Xu ◽  
Chen Liu ◽  
Hong Wang ◽  
Mujun Qian ◽  
Wenfeng Sun

Abstract Secure transmission is essential for future non-orthogonal multiple access (NOMA) system. This paper investigates relay-antenna selection (RAS) to enhance physical-layer security (PLS) of cooperative NOMA system in the presence of an eavesdropper, where multiple antennas are deployed at the relays, the users, and the eavesdropper. In order to reduce expense on radio frequency (RF) chains, selection combining (SC) is employed at both the relays and the users, whilst the eavesdropper employs either maximal-ratio combining (MRC) or selection combining (SC) to process the received signals. Under the condition that the channel state information (CSI) of the eavesdropping channel is available or unavailable, two e↵ective relay-antenna selection schemes are proposed. Additionally, the closed-form expressions of secrecy outage probability (SOP) are derived for the proposed relay-antenna selection schemes. In order to gain more deep insights on the derived results, the asymptotic performance of the derived SOP is analyzed. In simulations, it is demonstrated that the theoretical results match well with the simulation results and the SOP of the proposed schemes is less than that of the conventional orthogonal multiple access (OMA) scheme obviously.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 79637-79649
Author(s):  
Tung Pham Huu ◽  
Tam Ninh Thi-Thanh ◽  
Chi Nguyen-Yen ◽  
Hung Tran ◽  
Viet Nguyen Dinh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document