Simulation of non-linear free surface motions in a cylindrical domain using a Chebyshev-Fourier spectral collocation method

2001 ◽  
Vol 36 (4) ◽  
pp. 465-496 ◽  
Author(s):  
M. J. Chern ◽  
A. G. L. Borthwick ◽  
R. Eatock Taylor
2018 ◽  
Vol 22 (1 Part B) ◽  
pp. 557-565 ◽  
Author(s):  
Fakhrodin Mohammadi ◽  
Mohammad Rashidi

An efficient Spectral Collocation method based on the shifted Legendre polynomials was applied to get solution of heat transfer of a micropolar fluid through a porous medium with radiation. A similarity transformation is applied to convert the governing equations to a system of non-linear ordinary differential equations. Then, the shifted Legendre polynomials and their operational matrix of derivative are used for producing an approximate solution for this system of non-linear differential equations. The main advantage of the proposed method is that the need for guessing and correcting the initial values during the solution procedure is eliminated and a stable solution with good accuracy can be obtained by using the given boundary conditions in the problem. A very good agreement is observed between the obtained results by the proposed Spectral Collocation method and those of previously published ones.


2019 ◽  
Vol 23 (3 Part A) ◽  
pp. 1529-1537 ◽  
Author(s):  
Yin Yang ◽  
Xinfa Yang ◽  
Jindi Wang ◽  
Jie Liu

In this paper, we consider the numerical solution of the time-fractional non-linear Klein-Gordon equation. We propose a spectral collocation method in both temporal and spatial discretizations with a spectral expansion of Jacobi interpolation polynomial for this equation. A rigorous error analysis is provided for the spectral methods to show both the errors of approximate solutions and the errors of approximate derivatives of the solutions decaying exponentially in infinity-norm and weighted L2-norm. Numerical tests are carried out to confirm the theoretical results.


Author(s):  
Phumlani G. Dlamini ◽  
Vusi M. Magagula

AbstractIn this paper, we introduce the multi-variate spectral quasi-linearization method which is an extension of the previously reported bivariate spectral quasi-linearization method. The method is a combination of quasi-linearization techniques and the spectral collocation method to solve three-dimensional partial differential equations. We test its applicability on the (2 + 1) dimensional Burgers’ equations. We apply the spectral collocation method to discretize both space variables as well as the time variable. This results in high accuracy in both space and time. Numerical results are compared with known exact solutions as well as results from other papers to confirm the accuracy and efficiency of the method. The results show that the method produces highly accurate solutions and is very efficient for (2 + 1) dimensional PDEs. The efficiency is due to the fact that only few grid points are required to archive high accuracy. The results are portrayed in tables and graphs.


Sign in / Sign up

Export Citation Format

Share Document