spectral expansion
Recently Published Documents


TOTAL DOCUMENTS

129
(FIVE YEARS 30)

H-INDEX

15
(FIVE YEARS 3)

2021 ◽  
Vol 24 (2) ◽  
pp. 55-61
Author(s):  
Veniamin N. Tarasov ◽  
Nadezhda F. Bakhareva

In this paper, we obtained a spectral expansion of the solution to the Lindley integral equation for a queuing system with a shifted Erlang input flow of customers and a hyper-Erlang distribution of the service time. On its basis, a calculation formula is derived for the average waiting time in the queue for this system in a closed form. As you know, all other characteristics of the queuing system are derivatives of the average waiting time. The resulting calculation formula complements and expands the well-known unfinished formula for the average waiting time in queue in queuing theory for G/G/1 systems. In the theory of queuing, studies of private systems of the G/G/1 type are relevant due to the fact that they are actively used in the modern theory of teletraffic, as well as in the design and modeling of various data transmission systems.


2021 ◽  
Author(s):  
mohammed Salim Jasim

Abstract Photonic crystal fibers (PCFs) with periodic structure, are a never-ending and constantly evolving. in this study was designed fiber photonic crystal is proposed and proven through the Matlab program, which employs the Split-Step Fourier method (SSFM). Among the consequences demonstrated and studied are the solitons in different order, The impact of changing the radius of air holes on the geography of solitone propagation during fiber has studied, and get supercontinuum generation by increasing the value of radius affecting the third-order soliton. This spectral expansion has important in many modern applications, including medical, industrial and military, as well as have an important role in communication systems.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Davod Nobahar ◽  
Sirous Khorram ◽  
João D. Rodrigues

AbstractThis paper is devoted to the study of vortex beam transmission from an adjustable magnetized plasma-ferrite structure with negative refraction index. We use the angular spectral expansion technique together with the $$4\times 4$$ 4 × 4 matrix method to find out the transmitted intensity and phase profiles of incoming Laguerre-Gaussian beam. Based on numerical analysis we demonstrate that high transparency and large amount of Faraday rotation in the proximity of resonance frequency region, reverse rotation of spiral wave front, and side-band modes generation during propagation are the remarkable features of our proposed structure. These controllable properties of plasma-ferrite metamaterials via external static magnetic field and other structure parameters provide novel facilities for manipulating intensity and phase profiles of vortex radiation in transmission through the material. It is expected that the results of this work will be beneficial to develop active magneto-optical devices, orbital angular momentum based applications, and wavefront engineering.


2021 ◽  
Vol 272 (1336) ◽  
Author(s):  
Pierre Patie ◽  
Mladen Savov

We provide the spectral expansion in a weighted Hilbert space of a substantial class of invariant non-self-adjoint and non-local Markov operators which appear in limit theorems for positive-valued Markov processes. We show that this class is in bijection with a subset of negative definite functions and we name it the class of generalized Laguerre semigroups. Our approach, which goes beyond the framework of perturbation theory, is based on an in-depth and original analysis of an intertwining relation that we establish between this class and a self-adjoint Markov semigroup, whose spectral expansion is expressed in terms of the classical Laguerre polynomials. As a by-product, we derive smoothness properties for the solution to the associated Cauchy problem as well as for the heat kernel. Our methodology also reveals a variety of possible decays, including the hypocoercivity type phenomena, for the speed of convergence to equilibrium for this class and enables us to provide an interpretation of these in terms of the rate of growth of the weighted Hilbert space norms of the spectral projections. Depending on the analytic properties of the aforementioned negative definite functions, we are led to implement several strategies, which require new developments in a variety of contexts, to derive precise upper bounds for these norms.


2021 ◽  
Author(s):  
Yanhua Tian

Power law degree distribution, the small world property, and bad spectral expansion are three of the most important properties of On-line Social Networks (OSNs). We sampled YouTube and Wikipedia to investigate OSNs. Our simulation and computational results support the conclusion that OSNs follow a power law degree distribution, have the small world property, and bad spectral expansion. We calculated the diameters and spectral gaps of OSNs samples, and compared these to graphs generated by the GEO-P model. Our simulation results support the Logarithmic Dimension Hypothesis, which conjectures that the dimension of OSNs is m = [log N]. We introduced six GEO-P type models. We ran simulations of these GEO-P-type models, and compared the simulated graphs with real OSN data. Our simulation results suggest that, except for the GEO-P (GnpDeg) model, all our models generate graphs with power law degree distributions, the small world property, and bad spectral expansion.


2021 ◽  
Author(s):  
Yanhua Tian

Power law degree distribution, the small world property, and bad spectral expansion are three of the most important properties of On-line Social Networks (OSNs). We sampled YouTube and Wikipedia to investigate OSNs. Our simulation and computational results support the conclusion that OSNs follow a power law degree distribution, have the small world property, and bad spectral expansion. We calculated the diameters and spectral gaps of OSNs samples, and compared these to graphs generated by the GEO-P model. Our simulation results support the Logarithmic Dimension Hypothesis, which conjectures that the dimension of OSNs is m = [log N]. We introduced six GEO-P type models. We ran simulations of these GEO-P-type models, and compared the simulated graphs with real OSN data. Our simulation results suggest that, except for the GEO-P (GnpDeg) model, all our models generate graphs with power law degree distributions, the small world property, and bad spectral expansion.


2021 ◽  
Vol 247 ◽  
pp. 02006
Author(s):  
Ryoichi Kondo ◽  
Tomohiro Endo ◽  
Akio Yamamoto ◽  
Satoshi Takeda ◽  
Hiroki Koike ◽  
...  

A Resonance calculation using energy Spectral Expansion (RSE) method has been recently proposed in order to efficiently treat complicated heterogeneous geometry and resonance interference effect. In the RSE method, ultra-fine group spectra are generated from ultra-fine group calculations in homogeneous geometry, and the spectra are expanded by the orthogonal basis on energy based on the singular value decomposition. Then the transport calculation for expansion coefficients is numerically performed, and the ultra-fine group spectra in the target heterogeneous regions are reconstructed by the expansion coefficients and the orthogonal basis. In this study, the RSE method is applied to multi-cell geometries including UO2, MOX and water cells, in which the resonance interference effect between UO2 and MOX fuel cells appears. The validity of the RSE method is confirmed through comparison with the reference effective multi-group cross sections obtained from the direct ultra-fine group calculation in the target heterogeneous geometry.


2020 ◽  
Vol 1 (1) ◽  
pp. 18-45
Author(s):  
Dan Gabriel Cacuci

This work illustrates the application of a comprehensive first-order adjoint sensitivity analysis methodology (1st-CASAM) to a heat conduction and convection analytical benchmark problem which simulates heat removal from a nuclear reactor fuel rod. This analytical benchmark problem can be used to verify the accuracy of numerical solutions provided by software modeling heat transport and fluid flow systems. This illustrative heat transport benchmark shows that collocation methods require one adjoint computation for every collocation point while spectral expansion methods require one adjoint computation for each cardinal function appearing in the respective expansion when recursion relations cannot be developed between the corresponding adjoint functions. However, it is also shown that spectral methods are much more efficient when recursion relations provided by orthogonal polynomials make it possible to develop recursion relations for computing the corresponding adjoint functions. When recursion relations cannot be developed for the adjoint functions, the collocation method is probably more efficient than the spectral expansion method, since the sources for the corresponding adjoint systems are just Dirac delta functions (which makes the respective computation equivalent to the computation of a Green’s function), rather than the more elaborated sources involving high-order Fourier basis functions or orthogonal polynomials. For systems involving many independent variables, it is likely that a hybrid combination of spectral expansions in some independent variables and collocation in the remaining independent variables would provide the most efficient computational outcome.


Quantum ◽  
2020 ◽  
Vol 4 ◽  
pp. 298
Author(s):  
Tom Bannink ◽  
Jop Briët ◽  
Farrokh Labib ◽  
Hans Maassen

Mixing (or quasirandom) properties of the natural transition matrix associated to a graph can be quantified by its distance to the complete graph. Different mixing properties correspond to different norms to measure this distance. For dense graphs, two such properties known as spectral expansion and uniformity were shown to be equivalent in seminal 1989 work of Chung, Graham and Wilson. Recently, Conlon and Zhao extended this equivalence to the case of sparse vertex transitive graphs using the famous Grothendieck inequality. Here we generalize these results to the non-commutative, or `quantum', case, where a transition matrix becomes a quantum channel. In particular, we show that for irreducibly covariant quantum channels, expansion is equivalent to a natural analog of uniformity for graphs, generalizing the result of Conlon and Zhao. Moreover, we show that in these results, the non-commutative and commutative (resp.) Grothendieck inequalities yield the best-possible constants.


2020 ◽  
Vol 19 ◽  

In this paper studied the convergence of spectral expansions of functions of the class W1 1 ( ) G ,G= ( ) 0,1 in eigenfunctions of an ordinary differential operator of third order with integral coefficients. Sufficient conditions for absolute and uniform convergence are obtained and the rate of uniform convergence of these expansions on the interval G is found.


Sign in / Sign up

Export Citation Format

Share Document