dynamics problems
Recently Published Documents


TOTAL DOCUMENTS

418
(FIVE YEARS 80)

H-INDEX

26
(FIVE YEARS 3)

2021 ◽  
Vol 8 (6) ◽  
pp. 888-896
Author(s):  
Juan Gabriel Rueda-Bayona ◽  
Laura Gil ◽  
Jose Manuel Calderón

The high development of the offshore industry for supporting new marine and renewable energy projects requires a constant improvement of methods for structure designing. Because recent studies warned that maximum environmental loads occur during low sea states and not during extreme sea states as recommend by the offshore standards (e.g., RP 2AWSD-2014), this study used measured wave and current data for analyzing that warning. The Colombian Caribbean coast was selected as the study area, and in situ ADCP data combined with Reanalysis and numerical data was used for identifying proper sea states for the analysis. Then, two low and one extreme sea states were selected and their associated current profiles were extracted, for providing input data for Computational Fluid Dynamics (CFD) and Finite Element Method (FEM) simulations to evaluate the effect of the hydrodynamic forces over a floating structure. The results showed that low sea states generated maximum loads and rotations in the floating structure, and the extreme sea states caused high-frequency vibrations that could provoke structural dynamics problems such as failures due to fatigue or sudden collapse by resonance and amplification.


Fluids ◽  
2021 ◽  
Vol 6 (11) ◽  
pp. 420
Author(s):  
Samuel ◽  
Andi Trimulyono ◽  
Parlindungan Manik ◽  
Deddy Chrismianto

Spray strips are deflectors added to the hull to reduce the Wetted Surface Area (WSA). The reduced WSA will decrease the total ship drag caused by the deflection of the spray strip installation. The research aimed to predict the function of the spray strip to improve ship performance using Computational Fluid Dynamics (CFD). The numerical approach in this study used the Finite Volume Method (FVM) with the RANS (Reynolds-averaged Navier–Stokes) equation to solve fluid dynamics problems. VOF (Volume of Fluid) was used to model the water and air phases. The results of this study indicated that the number of spray strips would have a significant effect compared to without using a spray strip. Spray strips with three strips could reduce the total resistance by 4.9% at Fr 1.78. Spray strips would increase the total resistance value by 2.1% at low speeds. Spray strips were effective for reducing total resistance at Fr > 1 or the planing mode conditions. The total resistance prediction used three suggestion profiles with the best performance to reduce total resistance by 6.0% at Fr 1.78.


Author(s):  
Yakov A. Rikhter ◽  

The deep structure and formation of the North Caspian (Precaspian) depression have not been fully understood due to the scarcity of depth studies at 18–22 km. The existing concepts and hypotheses are clearly insufficient to interpret the unexplained facts. New approaches and research efforts are necessary to solve the old problems. The current state of the depression deep structure problems is reviewed, and the existing explanation flaws are demonstrated. The depression consolidated crust has oceanic and riftogenic origin as it has been suggested by the author before. This explanation is supported by the Astrakhan deposit D-2 deep well core data. The Astrakhan-Aktobe zone arched uplift genesis, formation and role in the carbonate platforms emergence are discussed. Deep geothermy and fluid dynamics problems, as well as recent geophysical data are considered in view of the North Caspian depression hydrocarbon prospects.


2021 ◽  
Vol 2099 (1) ◽  
pp. 012009
Author(s):  
S V Bogomolov ◽  
A E Kuvshinnikov

Abstract This paper considers a new version of the discontinuous particle method, whose higher accuracy is based on the “predictor-corrector” scheme. The peculiarity of this version is a new criterion of rearranging particles at the “corrector” stage. In contrast to the previously used version with the analysis of overlapping particles, which required an assumption about their form, we use another key characteristic of particles, namely, their mass, more precisely, the assumption that in the nonlinear elastic transport not only particle masses are conserved but also the mass located between the centers of these particles. This requirement leads to the fact that changing a distance between particles in the process of their movement and conservation of mass in the space between them, lead to a change in the density of one of the particles. A new version arose in the solution of the two-dimensional transport problems. We emphasize that the discontinuity is smeared into a single particle, which indicates to a high accuracy of the method. The construction of the method for a simple nonlinear transport problem is a necessary step to simulate the complex gas dynamics problems.


Author(s):  
Vladislav Bogdanov

Refined model of S.P. Timoshenko makes it possible to consider the shear and the inertia rotation of the transverse section of the shell. Disturbances spread in the shells of S.P. Timoshenko type with finite speed. Therefore, to study the dynamics of propagation of wave processes in the fine shells of S.P. Timoshenko type is an important aspect as well as it is important to investigate a wave processes of the impact, shock in elastic foundation in which a striker is penetrating. The method of the outcoming dynamics problems to solve an infinite system of integral equations Volterra of the second kind and the convergence of this solution are well studied. Such approach has been successfully used for cases of the investigation of problems of the impact a hard bodies and an elastic fine shells of the Kirchhoff-Love type on elastic a half-space and a layer. In this paper an attempt is made to solve the axisymmetric problem of the impact of an elastic fine spheric shell of the S.P. Timoshenko type on an elastic half-space using the method of the outcoming dynamics problems to solve an infinite system of integral equations Volterra of the second kind. It is shown that this approach is not acceptable for investigated in this paper axisymmetric problem. The discretization using the Gregory methods for numerical integration and Adams for solving the Cauchy problem of the reduced infinite system of Volterra equations of the second kind results in a poorly defined system of linear algebraic equations: as the size of reduction increases the determinant of such a system to aim at infinity. This technique does not allow to solve plane and axisymmetric problems of dynamics for fine shells of the S.P. Timoshenko type and elastic bodies. This shows the limitations of this approach and leads to the feasibility of developing other mathematical approaches and models. It should be noted that to calibrate the computational process in the elastoplastic formulation at the elastic stage, it is convenient and expedient to use the technique of the outcoming dynamics problems to solve an infinite system of integral equations Volterra of the second kind.


Author(s):  
Debadrita Saha ◽  
Srinivasan S. Iyengar ◽  
Philip Richerme ◽  
Jeremy M. Smith ◽  
Amr Sabry

Sign in / Sign up

Export Citation Format

Share Document