scholarly journals What Can Be Learned from Experience with Scientific Advisory Committees in the Field of International Environmental Politics?

2018 ◽  
Vol 2 (9) ◽  
pp. 1800055 ◽  
Author(s):  
Steinar Andresen ◽  
Prativa Baral ◽  
Steven J. Hoffman ◽  
Patrick Fafard
1996 ◽  
Vol 40 (1) ◽  
pp. 145
Author(s):  
Neil Harrison ◽  
Karen T. Litfin ◽  
Marian A. L. Miller

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1589-1589
Author(s):  
Fabian Frontzek ◽  
Marita Ziepert ◽  
Maike Nickelsen ◽  
Bettina Altmann ◽  
Bertram Glass ◽  
...  

Introduction: The R-MegaCHOEP trial showed that dose-escalation of conventional chemotherapy necessitating autologous stem cell transplantation (ASCT) does not confer a survival benefit for younger patients (pts) with high-risk aggressive B-cell lymphoma in the Rituximab era (Schmitz et al., Lancet Oncology 2012; 13, 1250-1259). To describe efficacy and toxicity over time and document the long-term risks of relapse and secondary malignancy we present the 10-year follow-up of this study. Methods: In the randomized, prospective phase 3 trial R-MegaCHOEP younger pts aged 18-60 years with newly diagnosed, high-risk (aaIPI 2-3) aggressive B-cell lymphoma were assigned to 8 cycles of CHOEP (cyclophosphamide, doxorubcine, vincristine, etoposide, prednisone) or 4 cycles of dose-escalated high-dose therapy (HDT) necessitating repetitive ASCT both combined with Rituximab. Both arms were stratified according to aaIPI, bulky disease, and center. Primary endpoint was event-free survival (EFS). All analyses were calculated for the intention-to-treat population. This follow-up report includes molecular data based on immunohistochemistry (IHC) and fluorescent in situ hybridization (FISH) for MYC (IHC: 31/92 positive [40-100%], FISH: 14/103 positive), BCL2 (IHC: 65/89 positive [50-100%], FISH: 23/111 positive) and BCL6 (IHC: 52/86 positive [30-100%], FISH: 34/110 positive) and data on cell of origin (COO) classification according to the Lymph2CX assay (GCB: 53/88; ABC: 24/88; unclassified: 11/88). Results: 130 pts had been assigned to R-CHOEP and 132 to R-MegaCHOEP. DLBCL was the most common lymphoma subtype (~80%). 73% of pts scored an aaIPI of 2 and 27% an aaIPI of 3. 60% of pts had an initial lymphoma bulk and in 40% more than 1 extranodal site was involved. After a median observation time of 111 months, EFS at 10 years was 57% (95% CI 47-67%) in the R-CHOEP vs. 51% in the R-MegaCHOEP arm (42-61%) (hazard ratio 1.3, 95% CI 0.9-1.8, p=0.228), overall survival (OS) after 10 years was 72% (63-81%) vs. 66% (57-76%) respectively (p=0.249). With regard to molecular characterization, we were unable to detect a significant benefit for HDT/ASCT in any subgroup analyzed. In total, 16% of pts (30 pts) relapsed after having achieved a complete remission (CR). 23% of all relapses (7 pts) showed an indolent histology (follicular lymphoma grade 1-3a) and 6 of these pts survived long-term. In contrast, of 23 pts (77%) relapsing with aggressive DLBCL or unknown histology 18 pts died due to lymphoma or related therapy. The majority of relapses occurred during the first 3 years after randomization (median time: 22 months) while after 5 years we detected relapses only in 5 pts (3% of all 190 pts prior CR). 11% of pts were initially progressive (28 pts) among whom 71% (20 pts) died rapidly due to lymphoma. Interestingly, the remaining 29% (8 pts) showed a long-term survival after salvage therapy (+/- ASCT); only 1 pt received allogeneic transplantation. The frequency of secondary malignancies was very similar in both treatment arms (9% vs. 8%) despite the very high dose of etoposide (total 4g/m2)in the R-MegaCHOEP arm. We observed 2 cases of AML and 1 case of MDS per arm. In total 70 pts (28%) have died: 30 pts due to lymphoma (12%), 22 pts therapy-related (11 pts due to salvage therapy) (9%), 8 pts of secondary neoplasia (3%), 5 pts due to concomitant disease (2%) and 5 pts for unknown reasons. Conclusions: This 10-year long-term follow-up of the R-MegaCHOEP trial confirms the very encouraging outcome of young high-risk pts following conventional chemotherapy with R-CHOEP. High-dose therapy did not improve outcome in any subgroup analysis including molecular high-risk groups. Relapse rate was generally low. Pts with aggressive relapse showed a very poor long-term outcome while pts with indolent histology at relapse survived long-term. Secondary malignancies occurred; however, they were rare with no excess leukemias/MDS following treatment with very high doses of etoposide and other cytotoxic agents. Supported by Deutsche Krebshilfe. Figure Disclosures Nickelsen: Roche Pharma AG: Membership on an entity's Board of Directors or advisory committees, Other: Travel Grants; Celgene: Membership on an entity's Board of Directors or advisory committees, Other: Travel Grant; Janssen: Membership on an entity's Board of Directors or advisory committees. Hänel:Amgen: Honoraria; Celgene: Other: advisory board; Novartis: Honoraria; Takeda: Other: advisory board; Roche: Honoraria. Truemper:Nordic Nanovector: Consultancy; Roche: Research Funding; Mundipharma: Research Funding; Janssen Oncology: Consultancy; Takeda: Consultancy, Research Funding; Seattle Genetics, Inc.: Research Funding. Held:Roche: Consultancy, Other: Travel support, Research Funding; Amgen: Research Funding; Acrotech: Research Funding; MSD: Consultancy; Bristol-Myers Squibb: Consultancy, Other: Travel support, Research Funding. Dreyling:Roche: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: scientific advisory board, Research Funding, Speakers Bureau; Bayer: Consultancy, Other: scientific advisory board, Speakers Bureau; Celgene: Consultancy, Other: scientific advisory board, Research Funding, Speakers Bureau; Mundipharma: Consultancy, Research Funding; Gilead: Consultancy, Other: scientific advisory board, Speakers Bureau; Novartis: Other: scientific advisory board; Sandoz: Other: scientific advisory board; Janssen: Consultancy, Other: scientific advisory board, Research Funding, Speakers Bureau; Acerta: Other: scientific advisory board. Viardot:Kite/Gilead: Honoraria, Membership on an entity's Board of Directors or advisory committees; Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees; Pfizer: Honoraria; F. Hoffmann-La Roche Ltd: Honoraria, Membership on an entity's Board of Directors or advisory committees. Rosenwald:MorphoSys: Consultancy. Lenz:Gilead: Consultancy, Honoraria, Research Funding, Speakers Bureau; AstraZeneca: Consultancy, Honoraria, Research Funding; Agios: Research Funding; Celgene: Consultancy, Honoraria, Research Funding, Speakers Bureau; Bayer: Consultancy, Honoraria, Research Funding, Speakers Bureau; Janssen: Consultancy, Honoraria, Research Funding, Speakers Bureau; Roche: Employment, Honoraria, Research Funding, Speakers Bureau; BMS: Consultancy. Schmitz:Novartis: Honoraria; Gilead: Honoraria; Celgene: Equity Ownership; Riemser: Consultancy, Honoraria.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 779-779 ◽  
Author(s):  
Zinaida Good ◽  
Jay Y. Spiegel ◽  
Bita Sahaf ◽  
Meena B. Malipatlolla ◽  
Matthew J. Frank ◽  
...  

Axicabtagene ciloleucel (Axi-cel) is an autologous anti-CD19 chimeric antigen receptor (CAR) T-cell therapy approved for the treatment of relapsed or refractory diffuse large B-cell lymphoma (r/r DLBCL). Long-term analysis of the ZUMA-1 phase 1-2 clinical trial showed that ~40% of Axi-cel patients remained progression-free at 2 years (Locke et al., Lancet Oncology 2019). Those patients who achieved a complete response (CR) at 6 months generally remained progression-free long-term. The biological basis for achieving a durable CR in patients receiving Axi-cel remains poorly understood. Here, we sought to identify CAR T-cell intrinsic features associated with CR at 6 months in DLBCL patients receiving commercial Axi-cel at our institution. Using mass cytometry, we assessed expression of 33 surface or intracellular proteins relevant to T-cell function on blood collected before CAR T cell infusion, on day 7 (peak expansion), and on day 21 (late expansion) post-infusion. To identify cell features that distinguish patients with durable CR (n = 11) from those who developed progressive disease (PD, n = 14) by 6 months following Axi-cel infusion, we performed differential abundance analysis of multiparametric protein expression on CAR T cells. This unsupervised analysis identified populations on day 7 associated with persistent CR or PD at 6 months. Using 10-fold cross-validation, we next fitted a least absolute shrinkage and selection operator (lasso) model that identified two clusters of CD4+ CAR T cells on day 7 as potentially predictive of clinical outcome. The first cluster identified by our model was associated with CR at 6 months and had high expression of CD45RO, CD57, PD1, and T-bet transcription factor. Analysis of protein co-expression in this cluster enabled us to define a simple gating scheme based on high expression of CD57 and T-bet, which captured a population of CD4+ CAR T cells on day 7 with greater expansion in patients experiencing a durable CR (mean±s.e.m. CR: 26.13%±2.59%, PD: 10.99%±2.53%, P = 0.0014). In contrast, the second cluster was associated with PD at 6 months and had high expression of CD25, TIGIT, and Helios transcription factor with no CD57. A CD57-negative Helios-positive gate captured a population of CD4+ CAR T cells was enriched on day 7 in patients who experienced progression (CR: 9.75%±2.70%, PD: 20.93%±3.70%, P = 0.016). Co-expression of CD4, CD25, and Helios on these CAR T cells highlights their similarity to regulatory T cells, which could provide a basis for their detrimental effects. In this exploratory analysis of 25 patients treated with Axi-cel, we identified two populations of CD4+ CAR T cells on day 7 that were highly associated with clinical outcome at 6 months. Ongoing analyses are underway to fully characterize this dataset, to explore the biological activity of the populations identified, and to assess the presence of other populations that may be associated with CAR-T expansion or neurotoxicity. This work demonstrates how multidimensional correlative studies can enhance our understanding of CAR T-cell biology and uncover populations associated with clinical outcome in CAR T cell therapies. This work was supported by the Parker Institute for Cancer Immunotherapy. Figure Disclosures Muffly: Pfizer: Consultancy; Adaptive: Research Funding; KITE: Consultancy. Miklos:Celgene: Membership on an entity's Board of Directors or advisory committees; BMS: Membership on an entity's Board of Directors or advisory committees; Kite-Gilead: Membership on an entity's Board of Directors or advisory committees, Research Funding; AlloGene: Membership on an entity's Board of Directors or advisory committees; Precision Bioscience: Membership on an entity's Board of Directors or advisory committees; Miltenyi Biotech: Membership on an entity's Board of Directors or advisory committees; Becton Dickinson: Research Funding; Adaptive Biotechnologies: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees, Research Funding; Juno: Membership on an entity's Board of Directors or advisory committees. Mackall:Vor: Other: Scientific Advisory Board; Roche: Other: Scientific Advisory Board; Adaptimmune LLC: Other: Scientific Advisory Board; Glaxo-Smith-Kline: Other: Scientific Advisory Board; Allogene: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Apricity Health: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Unum Therapeutics: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Obsidian: Research Funding; Lyell: Consultancy, Equity Ownership, Other: Founder, Research Funding; Nektar: Other: Scientific Advisory Board; PACT: Other: Scientific Advisory Board; Bryologyx: Other: Scientific Advisory Board.


Sign in / Sign up

Export Citation Format

Share Document