car t cells
Recently Published Documents


TOTAL DOCUMENTS

2782
(FIVE YEARS 1944)

H-INDEX

71
(FIVE YEARS 29)

2022 ◽  
Vol 74 ◽  
pp. 46-52
Author(s):  
Wingchi K Leung ◽  
Adanma Ayanambakkam ◽  
Helen E Heslop ◽  
LaQuisa C Hill
Keyword(s):  
T Cells ◽  

2022 ◽  
Author(s):  
Hanyu Pan ◽  
Jing Wang ◽  
Huitong Liang ◽  
Zhengtao Jiang ◽  
Lin Zhao ◽  
...  

HIV-specific chimeric antigen receptor (CAR) T cells have been developed to target latently infected CD4+ T cells that express virus either spontaneously or after intentional latency reversal. However, the T-cell exhaustion and the patient-specific autologous paradigm of CAR-T hurdled the clinical application. Here, we created HIV-specific CAR-T cells using human peripheral blood mononuclear cells and a 3BNC117-E27 CAR (3BE CAR) construct that enables the expression of PD-1 blocking scFv E27 and the single-chain variable fragment of the HIV-1-specific broadly neutralizing antibody 3BNC117 to target native HIV envelope glycoprotein (Env). In comparison with T cells expressing 3BNC117-CAR alone, 3BE CAR-T cells showed greater anti-HIV potency with stronger proliferation capability, higher killing efficiency (up to ~75%) and enhanced cytokine secretion in the presence of HIV envelope glycoprotein-expressing cells. Furthermore, our approach achieved high levels (over 97%) of the TCR-deficient 3BE CAR-T cells with the functional inactivation of endogenous TCR to avoid graft-versus-host disease without compromising their antiviral activity relative to standard anti-HIV CAR-T cells. These data suggest that we have provided a feasible approach to large-scale generation of "off-the-shelf" anti-HIV CAR-T cells in combination with antibody therapy of PD-1 blockade, which can be a powerful therapeutic candidate for the functional cure of HIV.


2022 ◽  
Vol 23 (2) ◽  
pp. 903
Author(s):  
Avinoam Reichman ◽  
Alexander Kunz ◽  
Jara J. Joedicke ◽  
Uta E. Höpken ◽  
Anna Keib ◽  
...  

Chimeric-antigen-receptor (CAR)-T-cell therapy is already widely used to treat patients who are relapsed or refractory to chemotherapy, antibodies, or stem-cell transplantation. Multiple myeloma still constitutes an incurable disease. CAR-T-cell therapy that targets BCMA (B-cell maturation antigen) is currently revolutionizing the treatment of those patients. To monitor and improve treatment outcomes, methods to detect CAR-T cells in human peripheral blood are highly desirable. In this study, three different detection reagents for staining BCMA-CAR-T cells by flow cytometry were compared. Moreover, a quantitative polymerase chain reaction (qPCR) to detect BCMA-CAR-T cells was established. By applying a cell-titration experiment of BCMA-CAR-T cells, both methods were compared head-to-head. In flow-cytometric analysis, the detection reagents used in this study could all detect BCMA-CAR-T cells at a similar level. The results of false-positive background staining differed as follows (standard deviation): the BCMA-detection reagent used on the control revealed a background staining of 0.04% (±0.02%), for the PE-labeled human BCMA peptide it was 0.25% (±0.06%) and for the polyclonal anti-human IgG antibody it was 7.2% (±9.2%). The ability to detect BCMA-CAR-T cells down to a concentration of 0.4% was similar for qPCR and flow cytometry. The qPCR could detect even lower concentrations (0.02–0.01%). In summary, BCMA-CAR-T-cell monitoring can be reliably performed by both flow cytometry and qPCR. In flow cytometry, reagents with low background staining should be preferred.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Derek P. Wong ◽  
Nand K. Roy ◽  
Keman Zhang ◽  
Anusha Anukanth ◽  
Abhishek Asthana ◽  
...  

AbstractB cell-activating factor (BAFF) binds the three receptors BAFF-R, BCMA, and TACI, predominantly expressed on mature B cells. Almost all B cell cancers are reported to express at least one of these receptors. Here we develop a BAFF ligand-based chimeric antigen receptor (CAR) and generate BAFF CAR-T cells using a non-viral gene delivery method. We show that BAFF CAR-T cells bind specifically to each of the three BAFF receptors and are effective at killing multiple B cell cancers, including mantle cell lymphoma (MCL), multiple myeloma (MM), and acute lymphoblastic leukemia (ALL), in vitro and in vivo using different xenograft models. Co-culture of BAFF CAR-T cells with these tumor cells results in induction of activation marker CD69, degranulation marker CD107a, and multiple proinflammatory cytokines. In summary, we report a ligand-based BAFF CAR-T capable of binding three different receptors, minimizing the potential for antigen escape in the treatment of B cell cancers.


Author(s):  
Alijah A. Griffith ◽  
Kenneth P. Callahan ◽  
Nathan Gordo King ◽  
Qian Xiao ◽  
Xiaolei Su ◽  
...  
Keyword(s):  
T Cells ◽  
B Cell ◽  

2022 ◽  
Vol 20 (1) ◽  
Author(s):  
Zhenzhong Chen ◽  
Seokgyu Han ◽  
Arleen Sanny ◽  
Dorothy Leung-Kwan Chan ◽  
Danny van Noort ◽  
...  

Abstract Background Most high-throughput screening (HTS) systems studying the cytotoxic effect of chimeric antigen receptor (CAR) T cells on tumor cells rely on two-dimensional cell culture that does not recapitulate the tumor microenvironment (TME). Tumor spheroids, however, can recapitulate the TME and have been used for cytotoxicity assays of CAR T cells. But a major obstacle to the use of tumor spheroids for cytotoxicity assays is the difficulty in separating unbound CAR T and dead tumor cells from spheroids. Here, we present a three-dimensional hanging spheroid plate (3DHSP), which facilitates the formation of spheroids and the separation of unbound and dead cells from spheroids during cytotoxicity assays. Results The 3DHSP is a 24-well plate, with each well composed of a hanging dripper, spheroid wells, and waste wells. In the dripper, a tumor spheroid was formed and mixed with CAR T cells. In the 3DHSP, droplets containing the spheroids were deposited into the spheroid separation well, where unbound and dead T and tumor cells were separated from the spheroid through a gap into the waste well by tilting the 3DHSP by more than 20°. Human epidermal growth factor receptor 2 (HER2)-positive tumor cells (BT474 and SKOV3) formed spheroids of approximately 300–350 μm in diameter after 2 days in the 3DHSP. The cytotoxic effects of T cells engineered to express CAR recognizing HER2 (HER2-CAR T cells) on these spheroids were directly measured by optical imaging, without the use of live/dead fluorescent staining of the cells. Our results suggest that the 3DHSP could be incorporated into a HTS system to screen for CARs that enable T cells to kill spheroids formed from a specific tumor type with high efficacy or for spheroids consisting of tumor types that can be killed efficiently by T cells bearing a specific CAR. Conclusions The results suggest that the 3DHSP could be incorporated into a HTS system for the cytotoxic effects of CAR T cells on tumor spheroids. Graphical Abstract


Author(s):  
Yelei Guo ◽  
Chuan Tong ◽  
Liping Su ◽  
Wenying Zhang ◽  
Hejin Jia ◽  
...  

Gene Therapy ◽  
2022 ◽  
Author(s):  
Young-In Kim-Hoehamer ◽  
Janice M. Riberdy ◽  
Fei Zheng ◽  
Jeoungeun J. Park ◽  
Na Shang ◽  
...  
Keyword(s):  
T Cells ◽  

Sign in / Sign up

Export Citation Format

Share Document