scholarly journals Expression of delta F508 cystic fibrosis transmembrane conductance regulator protein and related chloride transport properties in the gallbladder epithelium from cystic fibrosis patients

Hepatology ◽  
1999 ◽  
Vol 29 (6) ◽  
pp. 1624-1634 ◽  
Author(s):  
Nathalie Dray-Charier ◽  
Annick Paul ◽  
Jean-Yves Scoazec ◽  
Danielle Veissière ◽  
Martine Mergey ◽  
...  
2001 ◽  
Vol 281 (5) ◽  
pp. L1173-L1179 ◽  
Author(s):  
Kristine G. Brady ◽  
Thomas J. Kelley ◽  
Mitchell L. Drumm

Epithelia of humans and mice with cystic fibrosis are unable to secrete chloride in response to a chloride gradient or to cAMP-elevating agents. Bioelectrical properties measured using the nasal transepithelial potential difference (TEPD) assay are believed to reflect these cystic fibrosis transmembrane conductance regulator (CFTR)-dependent chloride transport defects. Although the response to forskolin is CFTR mediated, the mechanisms responsible for the response to a chloride gradient are unknown. TEPD measurements performed on inbred mice were used to compare the responses to low chloride and forskolin in vivo. Both responses show little correlation between or within inbred strains of mice, suggesting they are mediated through partially distinct mechanisms. In addition, these responses were assayed in the presence of several chloride channel inhibitors, including DIDS, diphenylamine-2-carboxylate, glibenclamide, and 5-nitro-2-(3-phenylpropylamino)-benzoic acid, and a protein kinase A inhibitor, the Rp diastereomer of adenosine 3′,5′-cyclic monophosphothioate ( Rp-cAMPS). The responses to low chloride and forskolin demonstrate significantly different pharmacological profiles to both DIDS and Rp-cAMPS, indicating that channels in addition to CFTR contribute to the low chloride response.


2015 ◽  
Vol 43 (5) ◽  
pp. 894-900 ◽  
Author(s):  
Naomi L. Pollock ◽  
Tracy L. Rimington ◽  
Robert C. Ford

As an ion channel, the cystic fibrosis transmembrane conductance regulator (CFTR) protein occupies a unique niche within the ABC family. Orthologues of CFTR are extant throughout the animal kingdom from sharks to platypods to sheep, where the osmoregulatory function of the protein has been applied to differing lifestyles and diverse organ systems. In humans, loss-of-function mutations to CFTR cause the disease cystic fibrosis, which is a significant health burden in populations of white European descent. Orthologue screening has proved fruitful in the pursuit of high-resolution structural data for several membrane proteins, and we have applied some of the princples developed in previous studies to the expression and purification of CFTR. We have overexpressed this protein, along with evolutionarily diverse orthologues, in Saccharomyces cerevisiae and developed a purification to isolate it in quantities sufficient for structural and functional studies.


2014 ◽  
Vol 62 (11) ◽  
pp. 791-801 ◽  
Author(s):  
Pascale Marcorelles ◽  
Gaëlle Friocourt ◽  
Arnaud Uguen ◽  
Françoise Ledé ◽  
Claude Férec ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document