Analysis and assessment of a nanoparticle seeded small scale absorption refrigeration system driven by a low‐grade waste heat source

Heat Transfer ◽  
2020 ◽  
Vol 49 (6) ◽  
pp. 3409-3432
Author(s):  
Bhaumik Modi ◽  
Ankit Ginoya ◽  
Anurag Mudgal ◽  
Vivek Patel
2020 ◽  
Vol 10 (3) ◽  
pp. 45
Author(s):  
J. SIDDHARTHA YADAV ◽  
CH. MANIKANTESWAR RAO ◽  
V. VINAY KUMAR ◽  
◽  
◽  
...  

2016 ◽  
Vol 24 (02) ◽  
pp. 1630003 ◽  
Author(s):  
Anirban Sur ◽  
Randip K. Das

Researchers proved that, heat powered adsorption refrigeration technology is very effective methods for reutilization of low-grade thermal energy such as industrial waste heat, solar energy, and exhaust gases from engines. But to make it commercially competitive with the well-known vapor compression and absorption refrigeration system, the processes require high rates of heat and mass transfer characteristic between adsorbate and adsorbent as well as externally supplied heat exchanging fluid. This paper reviews various techniques that have been developed and applied to enhance the heat transfer and mass transfer in adsorber beds, and also discuss their effects of the performance on adsorption system. A comprehensive literature review has been conducted and it was concluded that this technology, although attractive, has limitations regarding its heat and mass transfer performance that seem difficult to overcome. Therefore, more researches are required to improve heat and mass transfer performance and sustainability of basic adsorption cycles.


1971 ◽  
Vol 93 (2) ◽  
pp. 172-176
Author(s):  
M. E. Lackey

The thermal energy requirements for air conditioning by compressive and absorption methods were determined for light-water, thermal-breeder, and fast-breeder reactors. The energy required to produce a ton-hour of refrigeration varied from 5100 Btu to 13,100 Btu by absorption and from 5600 to 8800 Btu by compression. The amount of waste heat dissipated to the environment at the reactor site as a consequence of producing a ton-hour of air conditioning ranged from an increase of 21,000 Btu for the electric-motor-driven refrigeration system to a decrease of 6000 Btu for the absorption refrigeration system.


2009 ◽  
Vol 32 (4) ◽  
pp. 687-694 ◽  
Author(s):  
Paul Kalinowski ◽  
Yunho Hwang ◽  
Reinhard Radermacher ◽  
Saleh Al Hashimi ◽  
Peter Rodgers

2019 ◽  
Vol 23 (1) ◽  
pp. 149-157
Author(s):  
Mukul Kumar ◽  
Randip Das

This work presents an experimental study of an ammonia-water absorption refrigeration system using the exhaust of an internal combustion engine as energy source. The exhaust gas energy availability, the performance of the absorption refrigeration system and the engine performance are evaluated. A commercial turbocharged Diesel engine has been tested in a bench test dynamometer, with the absorption refrigeration system adapted to the exhaust system. The maximum COP obtained from the refrigeration system is 0.136 and it has been shown that heat energy available with exhaust gas is capable of producing sufficient cooling capacity for air conditioning the vehicle without requiring any energy input from the engine.


Sign in / Sign up

Export Citation Format

Share Document