exhaust system
Recently Published Documents


TOTAL DOCUMENTS

1207
(FIVE YEARS 261)

H-INDEX

21
(FIVE YEARS 4)

2022 ◽  
Vol 36 (06) ◽  
Author(s):  
NGUYEN MINH PHU ◽  
LE THANH DANH

DPF is an important device in the exhaust system of Diesel engine. In this paper we simulate velocity and pressure distributions in DPF to determine kinematic and hydraulic characteristics. This will provide the basis for designing and selecting size of channels in DPF. Numerical simulations were made using ANSYS Fluent commercial software and OpenFOAM open-source software. The results show that the difference between the two softwares is negligible. A compact 1D mathematical model developed based on the Darcy equation, momentum equation and continuity equation. The mathematical model solved by shooting method for boundary value problem. Simulation results from 1D and 3D approaches are very coincident.


2022 ◽  
Vol 62 (2) ◽  
pp. 026038
Author(s):  
C. Tantos ◽  
S. Varoutis ◽  
C. Day ◽  
L. Balbinot ◽  
P. Innocente ◽  
...  

Abstract Divertor Tokamak Test Facility (DTT) is a new European superconducting tokamak, currently under final design, addressed to investigate alternative power exhaust solutions for DEMO. Although the divertor system is not finalized yet, the machine and port geometry set limitations on the divertor pumping system operational space. A numerical study of neutral gas dynamics in the divertor region is performed based on the DSMC method by applying the DIVGAS code. The study includes both single-null (SN) and double-null (DN) divertor configurations. For both configurations, the SolEdge2D–EIRENE plasma simulations have been performed for a deuterium plasma with neon seeding and the extracted information about the neutral particles on the predefined interfaces is imposed as incoming boundary conditions for DIVGAS simulations. In the SN case, two plasma puffing scenarios and three candidate pumping port arrangements have been considered. The divertor dome influence on the pumped fluxes can reach 50%. An increase of the capture coefficient six times leads to a decrease in the pressure at the pumping openings by a factor of about 4.5–7. The influence of the size of the lower vertical opening has been studied showing that the enlarged vertical port may establish as the main pumping opening. In the DN case, when the pumping is performed from both lower and upper divertor the overall pumped fluxes at the upper divertor are always higher than the corresponding ones for the lower divertor by a factor of 2–2.5, mainly due to the difference in the pumping areas. In both SN and DN cases, the neutrals outflux toward the X-point dominates the particle transport in the private flux region. The operational space provided by this first assessment is relatively stable against modified classical divertor geometries and allows a more thorough assessment of the pumping technology of the DTT fusion device in the future.


2022 ◽  
Vol 571 ◽  
pp. 151311
Author(s):  
Doo San Kim ◽  
Yun Jong Jang ◽  
Ye Eun Kim ◽  
Hong Seong Gil ◽  
Hee Ju Kim ◽  
...  

2021 ◽  
pp. 203-212
Author(s):  
Claudiu Golgot ◽  
Nicolae Filip

The paper develops an ana lysis of exhaust noise for a single-cylinder diesel engine tested in laboratory conditions. The acoustic signal at the engine exhaust system, for the speed range 1,300 – 2,700 rpm was measured and recorded. The results of the noise recordings were subjected to a processing from which the variation of the noise level depending on the engine speed was obtained. Next, the physiological effect of acoustic filtrations for noise recordings was analyzed by simulation. This allowed the optimization of the exhaust noise, having identified the areas and the optimal attenuation effect. In the performed simulations, it was found that the low frequencies require the highest attenuation background.


2021 ◽  
Author(s):  
Nitin D. Pagar ◽  
Amit R. Patil

Abstract Exhaust expansion joints, also known as compensators, are found in a variety of applications such as gas turbine exhaust pipes, generators, marine propulsion systems, OEM engines, power units, and auxiliary equipment. The motion compensators employed must have accomplished the maximum expansion-contraction cycle life while imposing the least amount of stress. Discrepancies in the selecting of bellows expansion joint design parameters are corrected by evaluating stress-based fatigue life, which is challenging owing to the complicated form of convolutions. Meridional and circumferential convolution stress equations that influencing fatigue cycles are evaluated and verified with FEA. Fractional factorial Taguchi L25 matrix is used for finding the optimal configurations. The discrete design parameters for the selection of the suitable configuration of the compensators are analysed with the help of the MADM decision making techniques. The multi-response optimization methods GRA, AHP, and TOPSIS are used to determine the parametric selection on a priority basis. It is seen that weighing distribution among the responses plays an important role in these methods and GRA method integrated with principal components shows best optimal configurations. Multiple regression technique applied to these methods also shows that PCA-GRA gives better alternate solutions for the designer unlike the AHP and TOPSIS method. However, higher ranked Taguchi run obtained in these methods may enhance the suitable selection of different design configurations. Obtained PCA-GRG values by Taguchi, Regression and DOE are well matched and verified for the all alternate solutions. Further, it also shows that stress based fatigue cycles obtained in this analysis for the L25 run indicates the range varying from 1.13 × 104 cycles to 9.08 × 105 cycles, which is within 106 cycles. This work will assist the design engineer for selecting the discrete parameters of stiff compensators utilized in power plant thermal appliances.


2021 ◽  
Vol 2129 (1) ◽  
pp. 012077
Author(s):  
N A Aziz ◽  
M T A Rahman ◽  
N A M Amin ◽  
M S Bin Mohamad ◽  
A Mohamad ◽  
...  

Abstract This paper presents an investigation of flow characteristic inside the exhaust manifold that were designed with different bending angle (BA), bending radius (BR) and pipe diameter (Dp ). Five exhaust manifold models were developed and analysed by the computational fluid dynamic (CFD) method. Accordingly, the pressure distribution, velocity streamline and backpressure values were observed. The simulation results showed a different flow pattern for all five models, indicating the manifold design affect the flow characteristic inside the exhaust system. The results demonstrated that the pressure distribution inside the exhaust manifold is influencing its velocity streamline pattern, that directly effecting the outlet velocity of the exhaust gas. From this work, a small bending angle with a short straight pipe has led to a smoother exhaust flow and even exhaust velocity across the model. The results obtained from the simulation can be used as a guide to improve the understanding of the flow behaviour in the manifolds and might be used to improve the manifold design.


2021 ◽  
Author(s):  
Kacper Kuta ◽  
Ebrahim Nadimi ◽  
Grzegorz Przybyła ◽  
Zbigniew Żmudka ◽  
Wojciech Adamczyk

Investigation of exhaust emissions and ammonia flow behavior in the exhaust system incorporating with Selective Catalytic Reduction (SCR) unit is discussed. An aftertreatment system is designed to work without additional urea injection to improve feasible temperature of operating and reduce size. This study is focused on obtaining optimal parameters for catalysis using gaseus ammonia as reducing agent. Its effectiveness is considered as a function of basic parameters of exhaust gases mixture and SCR material characteristics. A 3D geometry of SCR with porous volume has been simulated using Ansys Fluent. Moreover, a 1D model of ammonia dual-fuel CI engine has been obtained. Results were focused on obtaining local temperature, velocity, and exhaust gases composition to predict optimal probes placement, pipes insulation parameters, and characteristic dimensions.


Author(s):  
Gabriel Kühberger ◽  
Hannes Wancura ◽  
Lukas Nenning ◽  
Eberhard Schutting

AbstractIn this paper, we describe experimental developments in an Exhaust Aftertreatment System (EAS) used in a four-cylinder Compression Ignition (CI) engine. To meet the carbon dioxide (CO$$_\mathrm {2}$$ 2 ) fleet limit values and to demonstrate a clean emission concept, the CI engine needs to be further developed in a hybridized, modern form before it can be included in the future fleet. In this work, the existing EAS was replaced by an Electrically Heated Catalyst (EHC) and a Selective Catalytic Reduction (SCR) double-dosing system. We focused specifically on calibrating the heating modes in tandem with the electric exhaust heating, which enabled us to develop an ultra-fast light-off concept. The paper first outlines the development steps, which were subsequently validated using the Worldwide harmonized Light-duty vehicles Test Cycle (WLTC). Then, based on the defined calibration, a sensitivity analysis was conducted by performing various dynamic driving cycles. In particular, we identified emission species that may be limited in the future, such as laughing gas (N$$_\mathrm {2}$$ 2 O), ammonia (NH$$_\mathrm {3}$$ 3 ), or formaldehyde (HCHO), and examined the effects of a general, additional decrease in the limit values, which may occur in the near future. This advanced emission concept can be applied when considering overall internal engine and external exhaust system measures. In our study, we demonstrate impressively low tailpipe (TP) emissions, but also clarify the system limits and the necessary framework conditions that ensure the applicability of this drivetrain concept in this sector.


Sign in / Sign up

Export Citation Format

Share Document