Comprehensive learning particle swarm optimizer for solving multiobjective optimization problems

2005 ◽  
Vol 21 (2) ◽  
pp. 209-226 ◽  
Author(s):  
V.L. Huang ◽  
P.N. Suganthan ◽  
J.J. Liang
2015 ◽  
pp. 1246-1276
Author(s):  
Wen Fung Leong ◽  
Yali Wu ◽  
Gary G. Yen

Generally, constraint-handling techniques are designed for evolutionary algorithms to solve Constrained Multiobjective Optimization Problems (CMOPs). Most Multiojective Particle Swarm Optimization (MOPSO) designs adopt these existing constraint-handling techniques to deal with CMOPs. In this chapter, the authors present a constrained MOPSO in which the information related to particles' infeasibility and feasibility status is utilized effectively to guide the particles to search for feasible solutions and to improve the quality of the optimal solution found. The updating of personal best archive is based on the particles' Pareto ranks and their constraint violations. The infeasible global best archive is adopted to store infeasible nondominated solutions. The acceleration constants are adjusted depending on the personal bests' and selected global bests' infeasibility and feasibility statuses. The personal bests' feasibility statuses are integrated to estimate the mutation rate in the mutation procedure. The simulation results indicate that the proposed constrained MOPSO is highly competitive in solving selected benchmark problems.


Author(s):  
Wen Fung Leong ◽  
Yali Wu ◽  
Gary G. Yen

Generally, constraint-handling techniques are designed for evolutionary algorithms to solve Constrained Multiobjective Optimization Problems (CMOPs). Most Multiojective Particle Swarm Optimization (MOPSO) designs adopt these existing constraint-handling techniques to deal with CMOPs. In this chapter, the authors present a constrained MOPSO in which the information related to particles' infeasibility and feasibility status is utilized effectively to guide the particles to search for feasible solutions and to improve the quality of the optimal solution found. The updating of personal best archive is based on the particles' Pareto ranks and their constraint violations. The infeasible global best archive is adopted to store infeasible nondominated solutions. The acceleration constants are adjusted depending on the personal bests' and selected global bests' infeasibility and feasibility statuses. The personal bests' feasibility statuses are integrated to estimate the mutation rate in the mutation procedure. The simulation results indicate that the proposed constrained MOPSO is highly competitive in solving selected benchmark problems.


Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3152
Author(s):  
Carine M. Rebello ◽  
Márcio A. F. Martins ◽  
Daniel D. Santana ◽  
Alírio E. Rodrigues ◽  
José M. Loureiro ◽  
...  

This work presents a novel approach for multiobjective optimization problems, extending the concept of a Pareto front to a new idea of the Pareto region. This new concept provides all the points beyond the Pareto front, leading to the same optimal condition with statistical assurance. This region is built using a Fisher–Snedecor test over an augmented Lagragian function, for which deductions are proposed here. This test is meant to provide an approximated depiction of the feasible operation region while using meta-heuristic optimization results to extract this information. To do so, a Constrained Sliding Particle Swarm Optimizer (CSPSO) was applied to solve a series of four benchmarks and a case study. The proposed test analyzed the CSPSO results, and the novel Pareto regions were estimated. Over this Pareto region, a clustering strategy was also developed and applied to define sub-regions that prioritize one of the objectives and an intermediary region that provides a balance between objectives. This is a valuable tool in the context of process optimization, aiming at assertive decision-making purposes. As this is a novel concept, the only way to compare it was to draw the entire regions of the benchmark functions and compare them with the methodology result. The benchmark results demonstrated that the proposed method could efficiently portray the Pareto regions. Then, the optimization of a Pressure Swing Adsorption unit was performed using the proposed approach to provide a practical application of the methodology developed here. It was possible to build the Pareto region and its respective sub-regions, where each process performance parameter is prioritized. The results demonstrated that this methodology could be helpful in processes optimization and operation. It provides more flexibility and more profound knowledge of the system under evaluation.


Author(s):  
Gary G. Yen ◽  
Wen-Fung Leong

Constraint handling techniques are mainly designed for evolutionary algorithms to solve constrained multiobjective optimization problems (CMOPs). Most multiojective particle swarm optimization (MOPSO) designs adopt these existing constraint handling techniques to deal with CMOPs. In the proposed constrained MOPSO, information related to particles’ infeasibility and feasibility status is utilized effectively to guide the particles to search for feasible solutions and improve the quality of the optimal solution. This information is incorporated into the four main procedures of a standard MOPSO algorithm. The involved procedures include the updating of personal best archive based on the particles’ Pareto ranks and their constraint violation values; the adoption of infeasible global best archives to store infeasible nondominated solutions; the adjustment of acceleration constants that depend on the personal bests’ and selected global best’s infeasibility and feasibility status; and the integration of personal bests’ feasibility status to estimate the mutation rate in the mutation procedure. Simulation to investigate the proposed constrained MOPSO in solving the selected benchmark problems is conducted. The simulation results indicate that the proposed constrained MOPSO is highly competitive in solving most of the selected benchmark problems.


Sign in / Sign up

Export Citation Format

Share Document