scholarly journals From a Pareto Front to Pareto Regions: A Novel Standpoint for Multiobjective Optimization

Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3152
Author(s):  
Carine M. Rebello ◽  
Márcio A. F. Martins ◽  
Daniel D. Santana ◽  
Alírio E. Rodrigues ◽  
José M. Loureiro ◽  
...  

This work presents a novel approach for multiobjective optimization problems, extending the concept of a Pareto front to a new idea of the Pareto region. This new concept provides all the points beyond the Pareto front, leading to the same optimal condition with statistical assurance. This region is built using a Fisher–Snedecor test over an augmented Lagragian function, for which deductions are proposed here. This test is meant to provide an approximated depiction of the feasible operation region while using meta-heuristic optimization results to extract this information. To do so, a Constrained Sliding Particle Swarm Optimizer (CSPSO) was applied to solve a series of four benchmarks and a case study. The proposed test analyzed the CSPSO results, and the novel Pareto regions were estimated. Over this Pareto region, a clustering strategy was also developed and applied to define sub-regions that prioritize one of the objectives and an intermediary region that provides a balance between objectives. This is a valuable tool in the context of process optimization, aiming at assertive decision-making purposes. As this is a novel concept, the only way to compare it was to draw the entire regions of the benchmark functions and compare them with the methodology result. The benchmark results demonstrated that the proposed method could efficiently portray the Pareto regions. Then, the optimization of a Pressure Swing Adsorption unit was performed using the proposed approach to provide a practical application of the methodology developed here. It was possible to build the Pareto region and its respective sub-regions, where each process performance parameter is prioritized. The results demonstrated that this methodology could be helpful in processes optimization and operation. It provides more flexibility and more profound knowledge of the system under evaluation.

2015 ◽  
pp. 1246-1276
Author(s):  
Wen Fung Leong ◽  
Yali Wu ◽  
Gary G. Yen

Generally, constraint-handling techniques are designed for evolutionary algorithms to solve Constrained Multiobjective Optimization Problems (CMOPs). Most Multiojective Particle Swarm Optimization (MOPSO) designs adopt these existing constraint-handling techniques to deal with CMOPs. In this chapter, the authors present a constrained MOPSO in which the information related to particles' infeasibility and feasibility status is utilized effectively to guide the particles to search for feasible solutions and to improve the quality of the optimal solution found. The updating of personal best archive is based on the particles' Pareto ranks and their constraint violations. The infeasible global best archive is adopted to store infeasible nondominated solutions. The acceleration constants are adjusted depending on the personal bests' and selected global bests' infeasibility and feasibility statuses. The personal bests' feasibility statuses are integrated to estimate the mutation rate in the mutation procedure. The simulation results indicate that the proposed constrained MOPSO is highly competitive in solving selected benchmark problems.


Author(s):  
Wen Fung Leong ◽  
Yali Wu ◽  
Gary G. Yen

Generally, constraint-handling techniques are designed for evolutionary algorithms to solve Constrained Multiobjective Optimization Problems (CMOPs). Most Multiojective Particle Swarm Optimization (MOPSO) designs adopt these existing constraint-handling techniques to deal with CMOPs. In this chapter, the authors present a constrained MOPSO in which the information related to particles' infeasibility and feasibility status is utilized effectively to guide the particles to search for feasible solutions and to improve the quality of the optimal solution found. The updating of personal best archive is based on the particles' Pareto ranks and their constraint violations. The infeasible global best archive is adopted to store infeasible nondominated solutions. The acceleration constants are adjusted depending on the personal bests' and selected global bests' infeasibility and feasibility statuses. The personal bests' feasibility statuses are integrated to estimate the mutation rate in the mutation procedure. The simulation results indicate that the proposed constrained MOPSO is highly competitive in solving selected benchmark problems.


2012 ◽  
Vol 12 (2) ◽  
pp. 23-33
Author(s):  
Elica Vandeva

Abstract Multiobjective optimization based on genetic algorithms and Pareto based approaches in solving multiobjective optimization problems is discussed in the paper. A Pareto based fitness assignment is used − non-dominated ranking and movement of a population towards the Pareto front in a multiobjective optimization problem. A MultiObjective Genetic Modified Algorithm (MOGMA) is proposed, which is an improvement of the existing algorithm.


2020 ◽  
Vol 13 (1) ◽  
pp. 48-68
Author(s):  
Alexandre Som ◽  
Kounhinir Some ◽  
Abdoulaye Compaore ◽  
Blaise Some

This work is devoted to evaluate the performances of the MOMA-plus method in solving multiobjective optimization problems. This assessment is doing on the complexity of its algorithm, the convergence and the diversity of solutions in relation to the Pareto front. All these parameters were evaluated on non-linear multiobjective test problems and obtained solutions are compared with those provided by the NSGA-II method. This comparative study made it possible tohighlight the performances of MOMA-plus method for solving non-linear multiobjective problems.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Cai Dai ◽  
Yuping Wang

In order to well maintain the diversity of obtained solutions, a new multiobjective evolutionary algorithm based on decomposition of the objective space for multiobjective optimization problems (MOPs) is designed. In order to achieve the goal, the objective space of a MOP is decomposed into a set of subobjective spaces by a set of direction vectors. In the evolutionary process, each subobjective space has a solution, even if it is not a Pareto optimal solution. In such a way, the diversity of obtained solutions can be maintained, which is critical for solving some MOPs. In addition, if a solution is dominated by other solutions, the solution can generate more new solutions than those solutions, which makes the solution of each subobjective space converge to the optimal solutions as far as possible. Experimental studies have been conducted to compare this proposed algorithm with classic MOEA/D and NSGAII. Simulation results on six multiobjective benchmark functions show that the proposed algorithm is able to obtain better diversity and more evenly distributed Pareto front than the other two algorithms.


Sign in / Sign up

Export Citation Format

Share Document