Learning decision trees for the partial label ranking problem

Author(s):  
Juan C. Alfaro ◽  
Juan A. Aledo ◽  
José A. Gámez
2021 ◽  
pp. 277-288
Author(s):  
Juan C. Alfaro ◽  
Juan A. Aledo ◽  
José A. Gámez

Author(s):  
Ayman Elgharabawy ◽  
Mukesh Prasad ◽  
Chin-Teng Lin

Equality and incomparability multi-label ranking have not been introduced to learning before. This paper proposes new native ranker neural network to address the problem of multi-label ranking including incomparable preference orders using a new activation and error functions and new architecture. Preference Neural Network PNN solves the multi-label ranking problem, where labels may have indifference preference orders or subgroups which are equally ranked. PNN is a nondeep, multiple-value neuron, single middle layer and one or more output layers network. PNN uses a novel positive smooth staircase (PSS) or smooth staircase (SS) activation function and represents preference orders and Spearman ranking correlation as objective functions. It is introduced in two types, Type A is traditional NN architecture and Type B uses expanding architecture by introducing new type of hidden neuron has multiple activation function in middle layer and duplicated output layers to reinforce the ranking by increasing the number of weights. PNN accepts single data instance as inputs and output neurons represent the number of labels and output value represents the preference value. PNN is evaluated using a new preference mining data set that contains repeated label values which have not experimented on before. SS and PS speed-up the learning and PNN outperforms five previously proposed methods for strict label ranking in terms of accurate results with high computational efficiency.


2017 ◽  
Vol 35 ◽  
pp. 38-50 ◽  
Author(s):  
Juan A. Aledo ◽  
José A. Gámez ◽  
David Molina

Author(s):  
Ayman Elgharabawy ◽  
Mukesh Parsad ◽  
Nikhil R. Pal ◽  
Chin-Teng Lin

Equality and incomparability multi-label ranking have not been introduced to learning before. This paper proposes new native ranker neural network to address the problem of multi-label ranking including incomparable preference orders using a new activation and error functions and new architecture. Preference Neural Network PNN solves the multi-label ranking problem, where labels may have indifference preference orders or subgroups which are equally ranked. PNN is a nondeep, multiple-value neuron, single middle layer and one or more output layers network. PNN uses a novel positive smooth staircase (PSS) or smooth staircase (SS) activation function and represents preference orders and Spearman ranking correlation as objective functions. It is introduced in two types, Type A is traditional NN architecture and Type B uses expanding architecture by introducing new type of hidden neuron has multiple activation function in middle layer and duplicated output layers to reinforce the ranking by increasing the number of weights. PNN accepts single data instance as inputs and output neurons represent the number of labels and output value represents the preference value. PNN is evaluated using a new preference mining data set that contains repeated label values which have not experimented on before. SS and PS speed-up the learning and PNN outperforms five previously proposed methods for strict label ranking in terms of accurate results with high computational efficiency.


Entropy ◽  
2021 ◽  
Vol 23 (4) ◽  
pp. 420
Author(s):  
Enrique G. Rodrigo ◽  
Juan C. Alfaro ◽  
Juan A. Aledo ◽  
José A. Gámez

The goal of the Label Ranking (LR) problem is to learn preference models that predict the preferred ranking of class labels for a given unlabeled instance. Different well-known machine learning algorithms have been adapted to deal with the LR problem. In particular, fine-tuned instance-based algorithms (e.g., k-nearest neighbors) and model-based algorithms (e.g., decision trees) have performed remarkably well in tackling the LR problem. Probabilistic Graphical Models (PGMs, e.g., Bayesian networks) have not been considered to deal with this problem because of the difficulty of modeling permutations in that framework. In this paper, we propose a Hidden Naive Bayes classifier (HNB) to cope with the LR problem. By introducing a hidden variable, we can design a hybrid Bayesian network in which several types of distributions can be combined: multinomial for discrete variables, Gaussian for numerical variables, and Mallows for permutations. We consider two kinds of probabilistic models: one based on a Naive Bayes graphical structure (where only univariate probability distributions are estimated for each state of the hidden variable) and another where we allow interactions among the predictive attributes (using a multivariate Gaussian distribution for the parameter estimation). The experimental evaluation shows that our proposals are competitive with the start-of-the-art algorithms in both accuracy and in CPU time requirements.


Author(s):  
Ayman Elgharabawy ◽  
Mukesh Parsad ◽  
Chin-Teng Lin

This paper proposes a preference neural network (PNN) to address the problem of indifference preferences orders with new activation function. PNN also solves the Multi-label ranking problem, where labels may have indifference preference orders or subgroups are equally ranked. PNN follows a multi-layer feedforward architecture with fully connected neurons. Each neuron contains a novel smooth stairstep activation function based on the number of preference orders. PNN inputs represent data features and output neurons represent label indexes. The proposed PNN is evaluated using new preference mining dataset that contains repeated label values which have not experimented before. PNN outperforms five previously proposed methods for strict label ranking in terms of accurate results with high computational efficiency.


Author(s):  
Ayman Elgharabawy ◽  
Mukesh Parsad ◽  
Chin-Teng Lin

Equality and incomparability multi-label ranking have not been introduced to learning before. This paper proposes new native ranker neural network to address the problem of multi-label ranking including incomparable preference orders using a new activation and error functions and new architecture. Preference Neural Network PNN solves the multi-label ranking problem, where labels may have indifference preference orders or subgroups which are equally ranked. PNN is a nondeep, multiple-value neuron, single middle layer and one or more output layers network. PNN uses a novel positive smooth staircase (PSS) or smooth staircase (SS) activation function and represents preference orders and Spearman ranking correlation as objective functions. It is introduced in two types, Type A is traditional NN architecture and Type B uses expanding architecture by introducing new type of hidden neuron has multiple activation function in middle layer and duplicated output layers to reinforce the ranking by increasing the number of weights. PNN accepts single data instance as inputs and output neurons represent the number of labels and output value represents the preference value. PNN is evaluated using a new preference mining data set that contains repeated label values which have not experimented on before. SS and PS speed-up the learning and PNN outperforms five previously proposed methods for strict label ranking in terms of accurate results with high computational efficiency.


Sign in / Sign up

Export Citation Format

Share Document