naive bayes
Recently Published Documents





2022 ◽  
Vol 24 (3) ◽  
pp. 1-19
Sunita Tiwari ◽  
Sushil Kumar ◽  
Vikas Jethwani ◽  
Deepak Kumar ◽  
Vyoma Dadhich

A news recommendation system not only must recommend the latest, trending and personalized news to the users but also give opportunity to know about the people’s opinion on trending news. Most of the existing news recommendation systems focus on recommending news articles based on user-specific tweets. In contrast to these recommendation systems, the proposed Personalized News and Tweet Recommendation System (PNTRS) recommends tweets based on the recommended article. It firstly generates news recommendation based on user’s interest and twitter profile using the Multinomial Naïve Bayes (MNB) classifier. Further, the system uses these recommended articles to recommend various trending tweets using fuzzy inference system. Additionally, feedback-based learning is applied to improve the efficiency of the proposed recommendation system. The user feedback rating is taken to evaluate the satisfaction level and it is 7.9 on the scale of 10.

Parita Shah ◽  
Priya Swaminarayan ◽  
Maitri Patel

<span>Opinion analysis is by a long shot most basic zone of characteristic language handling. It manages the portrayal of information to choose the motivation behind the wellspring of the content. The reason might be of a type of gratefulness (positive) or study (negative). This paper offers a correlation between the outcomes accomplished by applying the calculation arrangement using various classifiers for instance K-nearest neighbor and multinomial naive Bayes. These techniques are utilized to assess a significant assessment with either a positive remark or negative remark. The gathered information considered on the grounds of the extremity film datasets and an association with the results accessible proof has been created for a careful assessment. This paper investigates the word level count vectorizer and term frequency inverse document frequency (TF-IDF) influence on film sentiment analysis. We concluded that multinomial Naive Bayes (MNB) classier generate more accurate result using TF-IDF vectorizer compared to CountVectorizer, K-nearest-neighbors (KNN) classifier has the same accuracy result in case of TF-IDF and CountVectorizer.</span>

Angela More

Abstract: Data analytics play vital roles in diagnosis and treatment in the health care sector. To enable practitioner decisionmaking, huge volumes of data should be processed with machine learning techniques to produce tools for prediction and classification Breast Cancer reports 1 million cases per year. We have proposed a prediction model, which is specifically designed for prediction of Breast Cancer using Machine learning algorithms Decision tree classifier, Naïve Bayes, SVM and KNearest Neighbour algorithms. The model predicts the type of tumour, the tumour can be benign (noncancerous) or malignant (cancerous) . The model uses supervised learning which is a machine learning concept where we provide dependent and independent columns to machine. It uses classification technique which predicts the type of tumour. Keywords: Cancer, Machine learning, Prediction, Data Visualization, SVM, Naïve Bayes, Classification.

2022 ◽  
Vol 3 (2) ◽  
pp. 51-55
Misbachul Munir ◽  
Ipung Ardiansyah ◽  
Joko Dwi Santoso ◽  
Ali Mustopa ◽  
Sri Mulyatun

DDoS attacks are a form of attack carried out by sending packets continuously to machines and even computer networks. This attack will result in a machine or network resources that cannot be accessed or used by users. DDoS attacks usually originate from several machines operated by users or by bots, whereas Dos attacks are carried out by one person or one system. In this study, the term to be used is the term DDoS to represent a DoS or DDoS attack. In the network world, Software Defined Network (SDN) is a promising paradigm. SDN separates the control plane from forwarding plane to improve network programmability and network management. As part of the network, SDN is not spared from DDoS attacks. In this study, we use the naïve Bayes algorithm as a method to detect DDoS attacks on the Software Defined Network network architecture

2022 ◽  
Vol 3 (2) ◽  
pp. 39-45
Muhammad Farid Satrio Wibowo ◽  
Nila Feby Puspitasari ◽  
Barka Satya

Pemilihan konsentrasi atau minat studi merupakan hal yang tidak mudah dilakukan oleh seorang mahasiswa pada sebuah jurusan di Perguruan Tinggi. Mahasiswa akan berupaya memilih konsentrasi yang menurut mereka paling tepat dan sesuai dengan kompetensi dan minat studi, karena konsentrasi yang dipilih akan mempengaruhi minat belajar, prestasi, lama studi dan juga berpengaruh terhadap Indeks Prestasi Akademik (IPK) mahasiswa. Pentingnya memilih sebuah konsentrasi penjurusan bagi mahasiswa pada Institusi Perguruan Tinggi, maka perlu dibangun suatu model yang dapat membantu mahasiswa dalam memilih konsentrasi sesuai dengan kompetensi dan minat studi mahasiswa. Oleh karena itu, peneliti akan melakukan penelitian dengan membuat sistem untuk pemilihan konsentrasi mahasiswa menggunakan algoritma Naïve Bayes dengan metode klasifikasi. Untuk membantu dalam mengambil keputusan pemilihan konsentrasi, penelitian ini menggunakan teknik data mining sebagai proses pencarian pola yang diinginkan dalam sebuah database yang besar. Hasil pengujian yang telah dilakukan terhadap sample dataset sebanyak 1534 data menggunakan Algoritma Naïve Bayes, diperoleh bahwa hasil prediksi untuk menentukan konsentrasi memiliki nilai akurasi sebesar 84.27%. Variabel berpengaruh terhadap tingkat akurasi yang di hasilkan. Ukuran variabel yang sempit atau sedikit menyebabkan hasil akurasi yang kurang baik, tetapi ukuran variabel yang luas dapat menghasilkan akurasi ouput yang lebih optimal

2022 ◽  
Vol 10 (1) ◽  
pp. 1-8
Muhammad Mushlih Suhadi ◽  
M. Alauddin Helmi ◽  
Wahyudi Setiawan

S Raja Rajeswari ◽  
Dr. A. John Sanjeev Kumar

Opinion mining has become a major part in today's economy. People would want to know more about a product and the customers opinion before buying it. Companies would also want to know the opinions of the customers. Therefore, analyzing the customer’s opinion is important. A new customer would consider a product as good by analyzing the opinions of other customers. The opinions are collected from various areas, which include blogs, web forums, and product review sites. Classifying these large set of opinions requires a good classifier. In view of this, a comparative study of three classification techniques - Naive Bayes classifier with Kernel Density Estimation (KDE), Support Vector Machine (SVM), Decision Tree and KNN was made. To evaluate the classifier accuracy, precision, recall and F-measure techniques are used. Experimental results show that the Naive Bayes with Kernel Density Estimation (KDE) classifier achieved higher accuracy among others.

Computation ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 6
Korab Rrmoku ◽  
Besnik Selimi ◽  
Lule Ahmedi

Receiving a recommendation for a certain item or a place to visit is now a common experience. However, the issue of trustworthiness regarding the recommended items/places remains one of the main concerns. In this paper, we present an implementation of the Naive Bayes classifier, one of the most powerful classes of Machine Learning and Artificial Intelligence algorithms in existence, to improve the accuracy of the recommendation and raise the trustworthiness confidence of the users and items within a network. Our approach is proven as a feasible one, since it reached the prediction accuracy of 89%, with a confidence of approximately 0.89, when applied to an online dataset of a social network. Naive Bayes algorithms, in general, are widely used on recommender systems because they are fast and easy to implement. However, the requirement for predictors to be independent remains a challenge due to the fact that in real-life scenarios, the predictors are usually dependent. As such, in our approach we used a larger training dataset; hence, the response vector has a higher selection quantity, thus empowering a higher determining accuracy.

2022 ◽  
Vol 7 (1) ◽  
pp. 77-84
Fahmi Dian Pratama ◽  
Ilka Zufria ◽  
Triase Triase

Peran pendidikan sangat penting dalam rangka meningkatkan kecerdasan sumber daya manusia baik secara intelektual, emosional maupun spiritual. Namun seringkali pendidikan tidak berjalan dengan baik karena kurangnya faktor ekonomi yang mengakibatkan banyak anak putus sekolah. Untuk mengatasi hal tersebut, pemerintah telah membuat sebuah program agar masyarakat yang kurang mampu tetap dapat bersekolah secara gratis. Program ini dinamakan Program Indonesia Pintar (PIP). Komputerisasi pada proses pemberian bantuan ini tak dapat terhindarkan. Agar tidak terjadi kesalahan dalam menentukan penerima bantuan maka diperlukan penerapan data mining menggunakan algoritma Naïve Bayes yang dapat mengklasifikasikan tingkat kelayakan masyarakat dalam menerima bantuan sehingga diperoleh hasil yang lebih akurat dalam menentukan penerima bantuan Program Indonesia Pintar. Hasil penelitian ini diharapkan terciptanya sebuah sistem data mining yang mampu mendapatkan hasil yang akurat dalam menentukan penerima Program Indonesia Pintar.

M. Ilić ◽  
Z. Srdjević ◽  
B. Srdjević

Abstract In the fast-changing world with increased water demand, water pollution, environmental problems, and related data, information on water quality and suitability for any purpose should be prompt and reliable. Traditional approaches often fail in the attempt to predict water quality classes and new ones are needed to handle a large amount or missing data to predict water quality in real-time. One of such approaches is machine-learning (ML) based prediction. This paper presents the results of the application of the Naïve Bayes, a widely used ML method, in creating the prediction model. The proposed model is based on nine water quality parameters: temperature, pH value, electrical conductivity, oxygen saturation, biological oxygen demand, suspended solids, nitrogen oxides, orthophosphates, and ammonium. It is created in software Netica and tested and verified using the data covering the period 2013–2019 from five locations in Vojvodina Province, Serbia. Forty-eight samples are used to train the model. Once trained, the Naïve Bayes model correctly predicted the class of water sample in 64 out of 68 cases, including cases with missing data. This recommends it as a trustful tool in the transition from traditional to digital water management.

Sign in / Sign up

Export Citation Format

Share Document