Fuzzy edge connectivity in bipolar fuzzy networks and the applications in topology design

Author(s):  
Shu Gong ◽  
Gang Hua
Author(s):  
Swati Bhalaik ◽  
Ashutosh Sharma ◽  
Rajiv Kumar ◽  
Neeru Sharma

Objective: Optical networks exploit the Wavelength Division Multiplexing (WDM) to meet the ever-growing bandwidth demands of upcoming communication applications. This is achieved by dividing the enormous transmission bandwidth of fiber into smaller communication channels. The major problem with WDM network design is to find an optimal path between two end users and allocate an available wavelength to the chosen path for the successful data transmission. Methods: This communication over a WDM network is carried out through lightpaths. The merging of all these lightpaths in an optical network generates a virtual topology which is suitable for the optimal network design to meet the increasing traffic demands. But, this virtual topology design is an NP-hard problem. This paper aims to explore Mixed Integer Linear Programming (MILP) framework to solve this design issue. Results: The comparative results of the proposed and existing mathematical models show that the proposed algorithm outperforms with the various performance parameters. Conclusion: Finally, it is concluded that network congestion is reduced marginally in the overall performance of the network.


2021 ◽  
Vol 37 (3) ◽  
pp. 1013-1023
Author(s):  
J. Leaños ◽  
Christophe Ndjatchi
Keyword(s):  

Author(s):  
Sinan G. Aksoy ◽  
Mark Kempton ◽  
Stephen J. Young

Author(s):  
Lingfeng Kou ◽  
Zhihui Zhang ◽  
Geng Niu ◽  
Baodi Ding ◽  
Xiaoyun Qu ◽  
...  

2021 ◽  
Author(s):  
Han Ye ◽  
Yanrong Wang ◽  
Shuhe Zhang ◽  
Danshi Wang ◽  
Yumin Liu ◽  
...  

Precise manipulation of mode order in silicon waveguide plays a fundamental role in the on-chip all-optical interconnections and is still a tough task in design when the functional region is...


2006 ◽  
Vol 17 (03) ◽  
pp. 677-701 ◽  
Author(s):  
YUNG H. TSIN

A distributed algorithm for finding the cut-edges and the 3-edge-connected components of an asynchronous computer network is presented. For a network with n nodes and m links, the algorithm has worst-case [Formula: see text] time and O(m + nhT) message complexity, where hT < n. The algorithm is message optimal when [Formula: see text] which includes dense networks (i.e. m ∈ Θ(n2)). The previously best known distributed algorithm has a worst-case O(n3) time and message complexity.


Sign in / Sign up

Export Citation Format

Share Document