The Maple computer algebra system: A review

1995 ◽  
Vol 10 (3) ◽  
pp. 329-337 ◽  
Author(s):  
John Hutton ◽  
James Hutton
2019 ◽  
Vol 37 (3) ◽  
pp. 730-751
Author(s):  
Georgia G Pechlivanidou ◽  
Nicholas P Karampetakis

Abstract It is well known that given the continuous-time AutoRegressive representation $A\left ( \rho \right ) \beta \left ( t\right ) =0,$ where $\rho $ denotes the differential operator and $A\left ( \rho \right ) $ a regular polynomial matrix, we can always construct the smooth behaviour of this system, by using the finite zero structure of $A\left ( \rho \right ) $. The main theme of this work is to study the following inverse problem: given a specific smooth behaviour, find a family of regular polynomial matrices $A\left ( \rho \right ) $, such that the system $A\left ( \rho \right ) \beta \left ( t\right ) =0$ has exactly the prescribed behaviour. Following an idea coming from Antoulas & Willems (1993) and Willems (1986, 1991) we present an algorithm which solve this problem and can be easily implemented either in a computer programming language like C++ or in a computer algebra system like Mathematica.


1998 ◽  
Vol 37 (03) ◽  
pp. 235-238 ◽  
Author(s):  
M. El-Taha ◽  
D. E. Clark

AbstractA Logistic-Normal random variable (Y) is obtained from a Normal random variable (X) by the relation Y = (ex)/(1 + ex). In Monte-Carlo analysis of decision trees, Logistic-Normal random variates may be used to model the branching probabilities. In some cases, the probabilities to be modeled may not be independent, and a method for generating correlated Logistic-Normal random variates would be useful. A technique for generating correlated Normal random variates has been previously described. Using Taylor Series approximations and the algebraic definitions of variance and covariance, we describe methods for estimating the means, variances, and covariances of Normal random variates which, after translation using the above formula, will result in Logistic-Normal random variates having approximately the desired means, variances, and covariances. Multiple simulations of the method using the Mathematica computer algebra system show satisfactory agreement with the theoretical results.


2020 ◽  
Vol 9 (1) ◽  
pp. 53
Author(s):  
Kamhar Ngado ◽  
Rosnawati Rosnawati ◽  
Heri Retnawati ◽  
Sri Andayani

2021 ◽  
Vol 254 ◽  
pp. 02006
Author(s):  
Liubov Feshchenko ◽  
Gleb Vodinchar

The paper describes a technology for the automated compilation of equations for shell models of turbulence in the computer algebra system Maple. A general form of equations for the coefficients of nonlinear interactions is given, which will ensure that the required combination of quadratic invariants and power-law solutions is fulfilled in the model. Described the codes for the Maple system allowing to generate and solve systems of equations for the coefficients. The proposed technology allows you to quickly and accurately generate classes of shell models with the desired properties.


2012 ◽  
Vol 56 (1) ◽  
pp. 139-144
Author(s):  
Dumitru N. Vulcanov ◽  
Remus-Ştefan Ş. Boată

AbstractThe article presents some new aspects and experience on the use of computer in teaching general relativity and cosmology for undergraduate students (and not only) with some experience in computer manipulation. Some years ago certain results were reported [1] using old fashioned computer algebra platforms but the growing popularity of graphical platforms as Maple and Mathematica forced us to adapt and reconsider our methods and programs. We will describe some simple algebraic programming procedures (in Maple with GrTensorII package) for obtaining and the study of some exact solutions of the Einstein equations in order to convince a dedicated student in general relativity about the utility of a computer algebra system.


Sign in / Sign up

Export Citation Format

Share Document