nonlinear interactions
Recently Published Documents


TOTAL DOCUMENTS

810
(FIVE YEARS 120)

H-INDEX

47
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Shlomi Ziskin Ziv ◽  
Chaim I. Garfinkel ◽  
Sean Davis ◽  
Antara Banerjee

Abstract. The relative importance of two processes that help control the concentrations of stratospheric water vapor, the Quasi-Biennial Oscillation (QBO) and El Nino-Southern Oscillation (ENSO), are evaluated in observations and in comprehensive coupled ocean-atmosphere-chemistry models. The possibility of nonlinear interactions between these two is evaluated both using Multiple Linear Regression (MLR) and three additional advanced machine learning techniques. The QBO is found to be more important than ENSO, however nonlinear interactions are non-negligible, and even when ENSO, the QBO, and potential nonlinearities are included the fraction of entry water vapor variability explained is still substantially less than what is accounted for by cold point temperatures. While the advanced machine learning techniques perform better than an MLR in which nonlinearities are suppressed, adding nonlinear predictors to the MLR mostly closes the gap in performance with the advanced machine learning techniques. Comprehensive models suffer from too weak a connection between entry water and the QBO, however a notable improvement is found relative to previous generations of comprehensive models. Models with a stronger QBO in the lower stratosphere systematically simulate a more realistic connection with entry water.


Author(s):  
M. Nurul Islam ◽  
Onur Alp Ilhan ◽  
M. Ali Akbar ◽  
Fatma Berna Benli ◽  
Danyal Soybaş

2021 ◽  
Author(s):  
Santosh Manicka ◽  
Kathleen Johnson ◽  
David Murrugarra ◽  
Michael Levin

Nonlinearity is a characteristic of complex biological regulatory networks that has implications ranging from therapy to control. To better understand its nature, we analyzed a suite of published Boolean network models, containing a variety of complex nonlinear interactions, with an approach involving a probabilistic generalization of Boolean logic that George Boole himself had proposed. Leveraging the continuous-nature of this formulation using Taylor-decomposition methods revealed the distinct layers of nonlinearity of the models. A comparison of the resulting series of model approximations with the corresponding sets of randomized ensembles furthermore revealed that the biological networks are relatively more linearly approximable. We hypothesize that this is a result of optimization by natural selection for the purpose of controllability.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Fangpeng Ming ◽  
Liang Tan ◽  
Xiaofan Cheng

Big data has been developed for nearly a decade, and the information data on the network is exploding. Facing the complex and massive data, it is difficult for people to get the demanded information quickly, and the recommendation algorithm with its characteristics becomes one of the important methods to solve the massive data overload problem at this stage. In particular, the rise of the e-commerce industry has promoted the development of recommendation algorithms. Traditional, single recommendation algorithms often have problems such as cold start, data sparsity, and long-tail items. The hybrid recommendation algorithms at this stage can effectively avoid some of the drawbacks caused by a single algorithm. To address the current problems, this paper makes up for the shortcomings of a single collaborative model by proposing a hybrid recommendation algorithm based on deep learning IA-CN. The algorithm first uses an integrated strategy to fuse user-based and item-based collaborative filtering algorithms to generalize and classify the output results. Then deeper and more abstract nonlinear interactions between users and items are captured by improved deep learning techniques. Finally, we designed experiments to validate the algorithm. The experiments are compared with the benchmark algorithm on (Amazon item rating dataset), and the results show that the IA-CN algorithm proposed in this paper has better performance in rating prediction on the test dataset.


2021 ◽  
Vol 9 (12) ◽  
pp. 1422
Author(s):  
Elena Tobisch ◽  
Alexey Kartashov

The problem of spectral description of the nonlinear capillary waves on the fluid surface is discussed. Usually, three-wave nonlinear interactions are considered as a major factor determined by the energy spectrum of these waves in the kinetic wave turbulent regime. We demonstrate that four-wave interactions should be taken into account. In this case, there are two possible scenarios for the transfer of energy over the wave spectrum: kinetic and dynamic. The first is described by the averaged stochastic interaction of waves using the kinetic equation, while the second is described by dynamic equations written for discrete modes. In this article, we compare the time scales, spectral shapes, and other properties of both energy cascades, allowing them to be identified in an experiment.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yu Song ◽  
Yu Mo ◽  
Shiping Feng ◽  
Shi-Jie Yang

Dark solitons dynamically generated from a potential moving in a one-dimensional Bose-Einstein condensate are displayed. Based on numerical simulations of the Gross-Pitaevskii equation, we find that the moving obstacle successively emits a series of solitons which propagate at constant speeds. The dependence of soliton emission on the system parameters is examined. The formation mechanism of solitons is interpreted as interference between a diffusing wavepacket and the condensate background, enhanced by the nonlinear interactions.PACS numbers: 03.75.Mn, 03.75.Lm, 05.30.Jp


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ahmed H. Dorrah ◽  
Michele Tamagnone ◽  
Noah A. Rubin ◽  
Aun Zaidi ◽  
Federico Capasso

Abstract As a classical or quantum system undergoes a cyclic evolution governed by slow change in its parameter space, it acquires a topological phase factor known as the geometric or Berry phase. One popular manifestation of this phenomenon is the Gouy phase which arises when the radius of curvature of the wavefront changes adiabatically in a cyclic manner, for e.g., when focused by a lens. Here, we report on a new manifestation of the Berry phase in 3D structured light which arises when its polarization state adiabatically evolves along the optical path. We show that such a peculiar evolution of angular momentum, which occurs under free space propagation, is accompanied by an accumulated phase shift that elegantly coincides with Berry’s prediction. Unlike the conventional dynamic phase, which accumulates monotonically with propagation, the Berry phase observed here can be engineered on demand, thereby enabling new possibilities; such as spin-dependent spatial frequency shifts, and modified phase matching in resonators and nonlinear interactions. Our findings expand the laws of wave propagation and can be applied in optics and beyond.


2021 ◽  
Vol 8 ◽  
Author(s):  
Bingtian Li ◽  
Libin Du ◽  
Shiqiu Peng ◽  
Yibo Yuan ◽  
Xiangqian Meng ◽  
...  

Modulations of internal tides (ITs) including the baroclinic tidal energy budget, the incoherency, and the nonlinear interactions among different tidal components by turbulent mixing in the South China Sea (SCS) are investigated through numerical simulations. The baroclinic tidal energy budget can hardly be affected by the structure of mixing. Meanwhile, change in the mixing intensity in a reasonable range also cannot obviously modulate the baroclinic tidal energy budget in the SCS. Compared to the baroclinic energy budget, the distributions of conversion and dissipation are more sensitive to the change of mixing. Turbulent mixing also modulates the incoherency of ITs by changing the horizontal density in the ocean. The horizontal variation of density adds incoherence to ITs largely by affecting the internal tidal amplitudes. Furthermore, nonlinear interactions among different components of ITs are generally modulated by the mixing intensity, whereas the variation of the mixing structure can hardly influence the nonlinear interactions. Therefore, the diapycnal diffusivity can set to be horizontally and vertically homogeneous in most of the internal tidal simulations, except for those in which the incoherency of ITs needs to be simulated. However, excessive strong mixing will destroy the stratification. Thus, the optimum range for IT simulations in the SCS is from O (10–5) to O (10–3) m2s–1.


Sign in / Sign up

Export Citation Format

Share Document