Development of the glycogen body of the chick spinal cord. IV. Effects of mechanical manipulation of the roof plate at the lumbosacral level

1954 ◽  
Vol 125 (2) ◽  
pp. 285-330 ◽  
Author(s):  
Ray L. Watterson
2021 ◽  
Author(s):  
Baruch Haimson ◽  
Oren Meir ◽  
Reut Sudakevitz-Merzbach ◽  
Gerard Elberg ◽  
Samantha Friedrich ◽  
...  

AbstractFlight in birds evolved through patterning of the wings from forelimbs and transition from alternating gait to synchronous flapping. In mammals, the spinal midline guidance molecule ephrin-B3 instructs the wiring that enables limb alternation, and its deletion leads to synchronous hopping gait. Here we show that the ephrin-B3 protein in birds lacks several motifs present in other vertebrates, diminishing its affinity for the EphA4 receptor. The avian ephrin-B3 gene lacks an enhancer that drives midline expression, and is missing in Galliformes. The morphology and wiring at brachial levels of the chick spinal cord resemble those of ephrin-B3 null mice. Importantly, dorsal midline decussation, evident in the mutant mouse, is apparent at the chick brachial level, and is prevented by expression of exogenous ephrin-B3 at the roof plate. Our findings support a role for loss of ephrin-B3 function in shaping the avian brachial spinal cord circuitry and facilitating synchronous wing flapping.TeaserWalking vs flying: Deciphering the organization and evolution of the neuronal network that controls wing flapping in birds.


1982 ◽  
Vol 202 (4) ◽  
pp. 511-519 ◽  
Author(s):  
Masato Uehara ◽  
Toshihiko Ueshima

1991 ◽  
Vol 132 (2) ◽  
pp. 155-158 ◽  
Author(s):  
Nobuo Okado ◽  
Mutsumi Matsukawa ◽  
Shinobu Noritake ◽  
Shigeru Ozaki ◽  
Shun Hamada ◽  
...  

Development ◽  
1982 ◽  
Vol 71 (1) ◽  
pp. 83-95
Author(s):  
L. Hsu ◽  
D. Natyzak ◽  
G. L. Trupin

Soluble fractions of homogenized skeletal muscle were found to promote neuronal migration and neuritic and glial outgrowth from embryonic chick spinal cord explants. Fractions obtained from skeletal muscle immobilized by prolonged treatment with curare were significantly more effective than normal muscle in accelerating neuronal and glial development. Fractions from other tissues such as brain and lung did not enhance neuronal differentiation, but were effective in stimulating outgrowth of glial cells. Separate measurements of glial and neuronal responses indicate that tissue fractions produce independent effects on the glial and neuronal components.


Sign in / Sign up

Export Citation Format

Share Document