guidance molecule
Recently Published Documents


TOTAL DOCUMENTS

199
(FIVE YEARS 41)

H-INDEX

31
(FIVE YEARS 2)

eLife ◽  
2022 ◽  
Vol 11 ◽  
Author(s):  
Sonia Taïb ◽  
Noël Lamandé ◽  
Sabrina Martin ◽  
Fanny Coulpier ◽  
Piotr Topilko ◽  
...  

Peripheral nerves are vascularized by a dense network of blood vessels to guarantee their complex function. Despite the crucial role of vascularization to ensure nerve homeostasis and regeneration, the mechanisms governing nerve invasion by blood vessels remain poorly understood. We found, in mice, that the sciatic nerve invasion by blood vessels begins around embryonic day 16 and continues until birth. Interestingly, intra-nervous blood vessel density significantly decreases during post-natal period, starting from P10. We show that, while the axon guidance molecule Netrin-1 promotes nerve invasion by blood vessels via the endothelial receptor UNC5B during embryogenesis, myelinated Schwann cells negatively control intra-nervous vascularization during postnatal period.


2021 ◽  
Author(s):  
Feng Lv ◽  
Xiaojuan Ge ◽  
Peipei Qian ◽  
Xiaofeng Lu ◽  
Dong Liu ◽  
...  

Abstract As a tightly controlled biological process, cardiogenesis requires the specification and migration of a suite of cell types to form a particular three-dimensional configuration of the heart. Many genetic factors are involved in the formation and maturation of the heart, and any genetic mutations may result in severe cardiac failures. The neuron navigator (NAV) family consists of three vertebrate homologs (NAV1, NAV2, and NAV3) of the neural guidance molecule Uncoordinated-53 (UNC-53) in Caenorhabditis elegans. Although they are recognized as neural regulators, their expressions are also detected in many organs, including the heart, kidney, and liver. However, the functions of NAVs, regardless of neural guidance, remain largely unexplored. In our study, we found that nav3 gene was expressed in the cardiac region of zebrafish embryos from 24 to 48 hours post-fertilization (hpf) by means of in situ hybridization (ISH) assay. A CRISPR/Cas9-based genome editing method was utilized to delete the nav3 gene in zebrafish and loss-of-function of Nav3 resulted in a severe deficiency in its cardiac morphology and structure. The similar phenotypic defects of the knockout mutants could recur by nav3 morpholino injection and be rescued by nav3 mRNA injection. Dual-color fluorescence imaging of ventricle and atrium markers further confirmed the disruption of the heart development in nav3-deleted mutants. Although the heart rate was not affected by the deletion of nav3, the heartbeat intensity was decreased in the mutants. All these findings indicate that Nav3 was required for cardiogenesis in developing zebrafish embryos.


2021 ◽  
Author(s):  
Thanh T Le ◽  
Samantha L Payne ◽  
Maia N Buckwald ◽  
Lily A Hayes ◽  
Christopher B Burge ◽  
...  

AbstractIn breast cancer, nerve presence has been correlated with more invasive disease and worse prognosis, yet the mechanisms by which different types of peripheral nerves drive tumor progression remain poorly understood. In this study, we identified sensory nerves as more abundant in human triple-negative breast cancer (TNBC) tumors. Coinjection of sensory neurons isolated from the dorsal root ganglia (DRG) of adult female mice with human TNBC cells in immunocompromised mice increased the number of lung metastases. Direct in vitro co-culture of human TNBC cells with the dorsal root ganglia (DRG) of adult female mice revealed that TNBC cells adhere to sensory neuron fibers leading to an increase in migration speed. Species-specific RNA sequencing revealed that co-culture of TNBC cells with sensory nerves upregulates the expression of genes associated with cell migration and adhesion in cancer cells. We demonstrate that the axon guidance molecule Plexin B3 mediates cancer cell adhesion to and migration on sensory nerves. Together, our results identify a novel mechanism by which nerves contribute to breast cancer migration and metastasis by inducing a shift in TNBC cell gene expression and support the rationale for disrupting neuron-cancer cell interactions to target metastasis.SignificanceThe presence of nerves in breast tumors has been associated with poor outcome. Understanding the mechanisms by which nerves contribute to tumor progression could help identify novel strategies to target metastatic disease.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kaname Tsutsui ◽  
Hon-Song Kim ◽  
Chizu Yoshikata ◽  
Kenji Kimura ◽  
Yukihiko Kubota ◽  
...  

AbstractRepulsive guidance molecules (RGMs) are evolutionarily conserved proteins implicated in repulsive axon guidance. Here we report the function of the Caenorhabditis elegans ortholog DRAG-1 in axon branching. The axons of hermaphrodite-specific neurons (HSNs) extend dorsal branches at the region abutting the vulval muscles. The drag-1 mutants exhibited defects in HSN axon branching in addition to a small body size phenotype. DRAG-1 expression in the hypodermal cells was required for the branching of the axons. Although DRAG-1 is normally expressed in the ventral hypodermis excepting the vulval region, its ectopic expression in vulval precursor cells was sufficient to induce the branching. The C-terminal glycosylphosphatidylinositol anchor of DRAG-1 was important for its function, suggesting that DRAG-1 should be anchored to the cell surface. Genetic analyses suggested that the membrane receptor UNC-40 acts in the same pathway with DRAG-1 in HSN branching. We propose that DRAG-1 expressed in the ventral hypodermis signals via the UNC-40 receptor expressed in HSNs to elicit branching activity of HSN axons.


Cell Reports ◽  
2021 ◽  
Vol 37 (3) ◽  
pp. 109828
Author(s):  
Heike Blockus ◽  
Sebi V. Rolotti ◽  
Miklos Szoboszlay ◽  
Eugénie Peze-Heidsieck ◽  
Tiffany Ming ◽  
...  

2021 ◽  
Author(s):  
Kaname Tsutsui ◽  
Hon-Song Kim ◽  
Chizu Yoshikata ◽  
Kenji Kimura ◽  
Yukihiko Kubota ◽  
...  

Abstract Repulsive guidance molecules (RGMs) are evolutionarily conserved proteins implicated in repulsive axon guidance. Here we report the function of the Caenorhabditis elegans ortholog DRAG-1 in axon branching. The axons of hermaphrodite-specific neurons (HSNs) extend dorsal branches at the region abutting the vulval muscles. The drag-1 mutants exhibited defects in HSN axon branching in addition to a small body size phenotype. DRAG-1 expression in the hypodermal cells was required for the branching of the axons. Although DRAG-1 is normally expressed in the ventral hypodermis excepting the vulval region, its ectopic expression in vulval precursor cells was sufficient to induce the branching. The C-terminal glycosylphosphatidylinositol anchor of DRAG-1 was important for its function, suggesting that DRAG-1 should be anchored to the cell surface. Genetic analyses suggested that the membrane receptor UNC-40 acts in the same pathway with DRAG-1 in HSN branching. We propose that DRAG-1 expressed in the ventral hypodermis signals via the UNC-40 receptor expressed in HSNs to elicit branching activity of HSN axons.


2021 ◽  
Vol 14 (9) ◽  
pp. 906
Author(s):  
Yolanda Pérez ◽  
Roman Bonet ◽  
Miriam Corredor ◽  
Cecilia Domingo ◽  
Alejandra Moure ◽  
...  

Semaphorin 3A (Sema3A) is a cell-secreted protein that participates in the axonal guidance pathways. Sema3A acts as a canonical repulsive axon guidance molecule, inhibiting CNS regenerative axonal growth and propagation. Therefore, interfering with Sema3A signaling is proposed as a therapeutic target for achieving functional recovery after CNS injuries. It has been shown that Sema3A adheres to the proteoglycan component of the extracellular matrix (ECM) and selectively binds to heparin and chondroitin sulfate-E (CS-E) glycosaminoglycans (GAGs). We hypothesize that the biologically relevant interaction between Sema3A and GAGs takes place at Sema3A C-terminal polybasic region (SCT). The aims of this study were to characterize the interaction of the whole Sema3A C-terminal polybasic region (Sema3A 725–771) with GAGs and to investigate the disruption of this interaction by small molecules. Recombinant Sema3A basic domain was produced and we used a combination of biophysical techniques (NMR, SPR, and heparin affinity chromatography) to gain insight into the interaction of the Sema3A C-terminal domain with GAGs. The results demonstrate that SCT is an intrinsically disordered region, which confirms that SCT binds to GAGs and helps to identify the specific residues involved in the interaction. NMR studies, supported by molecular dynamics simulations, show that a new peptoid molecule (CSIC02) may disrupt the interaction between SCT and heparin. Our structural study paves the way toward the design of new molecules targeting these protein–GAG interactions with potential therapeutic applications.


Author(s):  
Wenchong Song ◽  
Chengjian Shi

Pancreatic cancer (PC) is among the most notorious malignancies worldwide. Long non-coding RNA (lncRNA) repulsive guidance molecule BMP co-receptor b antisense RNA 1 (RGMB-AS1) was an oncogene in glioma. However, the RGMB-AS1 function in PC remains largely unknown. Herein, RT-qPCR was performed to analyze the expression of RGMB-AS1 expression. We determined RGMB-AS1 influence on PC cell malignant behaviors via functional assays. Besides, we applied subcellular fractionation and FISH assays to confirm the cellular distribution of RGMB-AS1 in PC cells. We utilized mechanism assays to detect the regulatory axis of RGMB-AS1 in PC cells. Briefly, the level of RGMB-AS1 expression in PC cells was abnormally high. RGMB-AS1 knockdown impeded PC cell proliferation and migration, but induced cell apoptosis, and RGMB-AS1 overexpression led the opposite consequences. RGMB-AS1 acted as a competing endogenous RNA (ceRNA) to sequester miR-574-3p and thereby regulated Pim-3 proto-oncogene, serine/threonine kinase (PIM3) expression. Conclusively, our work revealed the cancer-promoting function of RGMB-AS1 in PC, and the regulatory mechanism of the RGMB-AS1/miR-574-3p/PIM3 axis might contribute to novel biomarker development in PC treatment.


2021 ◽  
Author(s):  
Dian Anggraini ◽  
Xun Liu ◽  
Kazunori Okano ◽  
Yo Tanaka ◽  
Naoyuki Inagaki ◽  
...  

Transplantation of scaffold-embedded guided neurons has been reported to increase neuronal regeneration following brain injury. However, precise axonal integration between host and transplant neurons to form functional synapses remains a major problem. This study aims to develop a real-time femtosecond (fs) laser penetration on a 4 μm thick thin-glass sheet to promote guided axon outgrowth influenced by molecular gradients in a microfluidic device. The device enables the introduction of the guidance molecule (i.e., netrin-1), neuronal culture, and manipulation by fs laser. After fabricating multiple micro-holes on the thin-glass sheet using fs laser, netrin-1 gradients with radial concentrations are generated in the chamber, affecting axon outgrowth and guidance. A majority of axons (~92%) experiences guided outgrowth with positive angular changes towards netrin-1 gradients. These results demonstrate the capability of the precise and real-time manipulation system based on a fs laser and a microfluidic device to control the growth of neurons.


Sign in / Sign up

Export Citation Format

Share Document