potential oscillations
Recently Published Documents


TOTAL DOCUMENTS

410
(FIVE YEARS 45)

H-INDEX

52
(FIVE YEARS 3)

Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 358
Author(s):  
Alexander Hoffmann ◽  
Bernd Ponick

This article describes a practical method for predicting the distribution of electric potential inside an electrical machine’s winding based on design data. It broadens the understanding of winding impedance in terms of inter-winding behavior and allows to properly design an electrical machine’s insulation system during the development phase. The predictions are made based on an frequency-dependent equivalent circuit of the electrical machine which is validated by measurements in the time domain and the frequency domain. Element parameters for the equivalent circuit are derived from two-dimensional field simulations. The results demonstrate a non-uniform potential distribution and demonstrate that the potential difference between individual turns and between turns and the stator core exceeds the expected values. The findings also show a link between winding impedance and potential oscillations inside the winding. Additionally, the article provides an overview of the chronological progression of turn-based models and shows how asynchronous multiprocessing is used to accelerate the solution process of the equivalent circuit.


eNeuro ◽  
2021 ◽  
pp. ENEURO.0212-21.2021
Author(s):  
Keyong Li ◽  
Yingtang Shi ◽  
Elizabeth C. Gonye ◽  
Douglas A. Bayliss

2021 ◽  
Vol MA2021-02 (58) ◽  
pp. 1748-1748
Author(s):  
Terumasa Kuge ◽  
Yuri Sakurada ◽  
Yoshiharu Mukouyama

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yu Long ◽  
Peisheng He ◽  
Zhichun Shao ◽  
Zhaoyang Li ◽  
Han Kim ◽  
...  

AbstractA variety of autonomous oscillations in nature such as heartbeats and some biochemical reactions have been widely studied and utilized for applications in the fields of bioscience and engineering. Here, we report a unique phenomenon of moisture-induced electrical potential oscillations on polymers, poly([2-(methacryloyloxy)ethyl] dimethyl-(3-sulfopropyl) ammonium hydroxide-co-acrylic acid), during the diffusion of water molecules. Chemical reactions are modeled by kinetic simulations while system dynamic equations and the stability matrix are analyzed to show the chaotic nature of the system which oscillates with hidden attractors to induce the autonomous surface potential oscillation. Using moisture in the ambient environment as the activation source, this self-excited chemoelectrical reaction could have broad influences and usages in surface-reaction based devices and systems. As a proof-of-concept demonstration, an energy harvester is constructed and achieved the continuous energy production for more than 15,000 seconds with an energy density of 16.8 mJ/cm2. A 2-Volts output voltage has been produced to power a liquid crystal display toward practical applications with five energy harvesters connected in series.


Author(s):  
Angela Isabel Tissone ◽  
Varinia Beatriz Vidal ◽  
Marcela Silvia Nadal ◽  
German Mato ◽  
Yimy Amarillo

Membrane potential oscillations of thalamocortical (TC) neurons are believed to be involved in the generation and maintenance of brain rhythms that underlie global physiological and pathological brain states. These membrane potential oscillations depend on the synaptic interactions of TC neurons and their intrinsic electrical properties. These oscillations may be also shaped by increased output responses at a preferred frequency, known as intrinsic neuronal resonance. Here we combine electrophysiological recordings in mouse brain slices, modern pharmacological tools, dynamic clamp and computational modeling to study the ionic mechanisms that generate and modulate TC neuron resonance. We confirm findings of pioneering studies showing that most TC neurons display resonance which results from the interaction of the slow inactivation of the low threshold calcium current IT with the passive properties of the membrane. We also show that the hyperpolarization activated cationic current Ih is not involved in the generation of resonance, instead, it plays a minor role in the stabilization of TC neuron impedance magnitude due to its large contribution to the steady conductance. More importantly, we also demonstrate that TC neuron resonance is amplified by the inward rectifier potassium current IKir by a mechanism that hinges on its strong voltage dependent inward rectification (i.e. a negative slope conductance region) Accumulating evidence indicate that the ion channels that control the oscillatory behavior of TC neurons participate in pathophysiological processes. Results presented here points to IKir as a new potential target for therapeutic intervention.


2021 ◽  
Vol 118 (28) ◽  
pp. e2104668118
Author(s):  
Colin H. Peters ◽  
Pin W. Liu ◽  
Stefano Morotti ◽  
Stephanie C. Gantz ◽  
Eleonora Grandi ◽  
...  

Sinoatrial node myocytes (SAMs) act as cardiac pacemaker cells by firing spontaneous action potentials (APs) that initiate each heartbeat. The funny current (If) is critical for the generation of these spontaneous APs; however, its precise role during the pacemaking cycle remains unresolved. Here, we used the AP-clamp technique to quantify If during the cardiac cycle in mouse SAMs. We found that If is persistently active throughout the sinoatrial AP, with surprisingly little voltage-dependent gating. As a consequence, it carries both inward and outward current around its reversal potential of −30 mV. Despite operating at only 2 to 5% of its maximal conductance, If carries a substantial fraction of both depolarizing and repolarizing net charge movement during the firing cycle. We also show that β-adrenergic receptor stimulation increases the percentage of net depolarizing charge moved by If, consistent with a contribution of If to the fight-or-flight increase in heart rate. These properties were confirmed by heterologously expressed HCN4 channels and by mathematical models of If. Modeling further suggested that the slow rates of activation and deactivation of the HCN4 isoform underlie the persistent activity of If during the sinoatrial AP. These results establish a new conceptual framework for the role of If in pacemaking, in which it operates at a very small fraction of maximal activation but nevertheless drives membrane potential oscillations in SAMs by providing substantial driving force in both inward and outward directions.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Alexis Bédécarrats ◽  
Laura Puygrenier ◽  
John Castro O'Byrne ◽  
Quentin Lade ◽  
John Simmers ◽  
...  

The expression of motivated behaviors depends on both external and internally-arising neural stimuli, yet the intrinsic releasing mechanisms for such variably occurring behaviors remain elusive. In isolated nervous system preparations of Aplysia, we have found that irregularly expressed cycles of motor output underlying food-seeking behavior arise from regular membrane potential oscillations of varying magnitude in an identified pair of interneurons (B63) in the bilateral buccal ganglia. This rhythmic signal, which is specific to the B63 cells, is generated by organelle-derived intracellular calcium fluxes that activate voltage-independent plasma membrane channels. The resulting voltage oscillation spreads throughout a subset of gap junction-coupled buccal network neurons and by triggering plateau potential-mediated bursts in B63, can initiate motor output driving food-seeking action. Thus, an atypical neuronal pacemaker mechanism, based on rhythmic intracellular calcium store release and intercellular propagation, can act as an autonomous intrinsic releaser for the occurrence of a motivated behavior.


2021 ◽  
Author(s):  
Eleonora Lomi ◽  
Mathias L Mathiasen ◽  
Han Yin Cheng ◽  
Ningyu Zhang ◽  
John P Aggleton ◽  
...  

Retrosplenial cortex (RSC) lies at the interface between perceptual and memory networks in the brain and mediates between these, although it is not yet known how. It has two distinct subregions, granular (gRSC) and dysgranular (dRSC). The present study investigated how these subregions differ with respect to their electrophysiology and connections, as a step towards understanding their functions. gRSC is more closely connected to the hippocampal system, in which theta-band local field potential oscillations are prominent. We therefore compared theta-rhythmic single-unit activity between the two RSC subregions and found, mostly in gRSC, a subpopulation of non-directional cells with spiking activity strongly entrained by theta oscillations, suggesting a stronger coupling of gRSC to the hippocampal system. We then used retrograde tracers to examine whether differences in neural coding between RSC subregions might reflect differential inputs from the anterior thalamus, which is a prominent source of RSC afferents. We found that gRSC and dRSC differ in their afferents from two AV subfields: dorsomedial (AVDM) and ventrolateral (AVVL). AVVL targets both gRSC and dRSC, while AVDM provides a selective projection to gRSC. These combined results suggest the existence of two distinct but interacting RSC subcircuits: one connecting AVDM to gRSC that may comprise part of the cognitive hippocampal system, and the other connecting AVVL to both RSC regions that may link hippocampal and perceptual regions. We suggest that these subcircuits are distinct to allow for differential weighting during integration of converging sensory and cognitive computations: an integration that may take place in thalamus, RSC or both.


Sign in / Sign up

Export Citation Format

Share Document