Species Differences
Recently Published Documents





Xenobiotica ◽  
2022 ◽  
pp. 1-13
Ayaka Kojima ◽  
Ayuka Sogabe ◽  
Masayuki Nadai ◽  
Miki Katoh

2022 ◽  
Veikko F. Geyer ◽  
Jonathon Howard ◽  
Pablo Sartori

AbstractBiological systems are robust to perturbations at both the genetic and environmental levels, although these same perturbations can elicit variation in behaviour. The interplay between functional robustness and behavioural variability is exemplified at the organellar level by the beating of cilia and flagella. Cilia are motile despite wide genetic diversity between and within species, differences in intracellular concentrations of ATP and calcium, and considerable environment fluctuations in temperature and viscosity. At the same time, these perturbations result in a variety of spatio-temporal patterns that span a rich behavioural space. To investigate this behavioural space we analysed the dynamics of isolated cilia from the unicellular algae Chlamydomonas reinhardtii under many different environmental and genetic conditions. We found that, despite large changes in beat frequency and amplitude, the space of waveform shapes is low-dimensional in the sense that two features account for 80% of the observed variation. The geometry of this behavioural space accords with the predictions of a simple mechanochemical model in the low-viscosity regime. This allowed us to associate waveform shape variability with changes in only the curvature response coefficients of the dynein motors.

2021 ◽  
Vol 22 (24) ◽  
pp. 13293
Xiaoting Xu ◽  
Xi Zhang ◽  
Yuzhu Yuan ◽  
Yongrui Zhao ◽  
Hamza M. Fares ◽  

The aryl hydrocarbon receptor (AhR) is a transcription factor that regulates a wide range of biological and toxicological effects by binding to specific ligands. AhR ligands exist in various internal and external ecological systems, such as in a wide variety of hydrophobic environmental contaminants and naturally occurring chemicals. Most of these ligands have shown differential responses among different species. Understanding the differences and their mechanisms helps in designing better experimental animal models, improves our understanding of the environmental toxicants related to AhR, and helps to screen and develop new drugs. This review systematically discusses the species differences in AhR activation effects and their modes of action. We focus on the species differences following AhR activation from two aspects: (1) the molecular configuration and activation of AhR and (2) the contrast of cis-acting elements corresponding to AhR. The variations in the responses seen in humans and other species following the activation of the AhR signaling pathway can be attributed to both factors.

2021 ◽  
pp. DMD-AR-2021-000582
Zitao Guo ◽  
Mengling Liu ◽  
Jian Meng ◽  
Yaru Xue ◽  
Qi Huang ◽  

Nao Ota

Niche partitioning is often vital for the coexistence of ecologically similar species under limited resources. Here I will report the nesting strategy of the two sympatric songbirds and the species differences, which have been overlooked in the past. Blue-capped and red-cheeked cordon-bleus are socially monogamous, biparental songbirds (family Estrildidae) that sympatrically inhabit East Africa. My field observation during their breeding season revealed that red-cheeked cordon-bleus build their nests near wasp nests more frequently than blue-capped cordon-bleus. Blue-capped cordon-bleus instead tended to take over weaver’s old nest more often or use a broader range of nesting materials compared to red-cheeked cordon-bleus. These nesting strategies are already described in the literature as common behaviors in both species. However, the species differences of the adopting strategies have never been reported. While Estrildid finches are one of the best well-studied bird families of their behavior under the captive condition, my finding suggests that we still have limited knowledge of their wild behaviors and ecological plausibility, which is required to understand the functions and evolution.

Oikos ◽  
2021 ◽  
Cher F. Y. Chow ◽  
Emmy Wassénius ◽  
Maria Dornelas ◽  
Andrew S. Hoey

2021 ◽  
Vol 9 ◽  
Jeffrey M. DaCosta ◽  
Michael D. Sorenson

Indigobirds (Vidua spp.) are obligate brood parasites in which imprinting on heterospecific hosts shapes adult vocal behavior and mating preferences. Adult male indigobirds mimic the songs and other vocalizations of their respective hosts, which signals their own host environment to prospective mates and has important implications for speciation. In this study, we examined variation within and among indigobird species in the non-mimetic components of their vocal behavior, including both chatter calls and their impressive repertoires of intricate non-mimicry songs. We test whether indigobird species in Tanzania (V. chalybeata, V. codringtoni, V. funerea, and V. purpurascens) differ consistently in general features of their non-mimetic vocalizations, and we test whether local ecological conditions influence vocal behavior. Indigobird non-mimetic song repertories are learned from and shared with other males of the same species. We find that local dialect “neighborhoods” are variable in size among species and regions, depending on habitat continuity and the distribution of male territories. Despite the complete turnover of the specific songs comprising non-mimicry song repertoires from one local dialect to the next, we find significant species effects for more general measures of non-mimicry songs such as repertoire size and diversity, frequency, song length, and pace. For some traits, we also found significant regional differences, which may be mediated by significant relationships between elevation and morphometrics. Chatter calls were broadly similar across both species and localities, but we found significant species and region effects for frequency and to a lesser extent pace. We discuss the possibility that learning and mimicking the vocalizations of different hosts might influence the production of non-mimetic vocalizations and explain many of the species differences we detected. Whether these species differences are purely due to phenotypic plasticity or also reflect genetic divergence in traits influencing sound production and/or female preferences, they may contribute to reproductive isolation among nascent and recently evolved indigobird species.

2021 ◽  
Vol 22 ◽  
Si-Juan Huang ◽  
Meng-Ting Zuo ◽  
Xue-Jia Qi ◽  
Xiao Ma ◽  
Zi-Yuan Wang ◽  

Background: Gelsemium elegans Benth(G. elegans) is a well-known toxic plant. Alkaloids are main active components of G. elegans. Currently, the metabolism of several alkaloids, such as gelsenicine, koumine, and gelsemine, has been widely studied. However, as one of the most important alkaloids in G. elegans, the metabolism of humantenine has not been studied yet. Methods: In order to elaborate on the in vitro metabolism of humantenine, a comparative analysis of its metabolic profile in human, pig, goat and rat liver microsomes was carried out using high-performance chromatography/quadrupole time-of-flight mass spectrometry (HPLC/QqTOF-MS) for the first time. Results: Totally, ten metabolites of humantenine were identified in liver microsomes from human (HLMs), pig (PLMs), goat (GLMs) and rat (RLMs) based on the accurate MS/MS spectra. Five metabolic pathways of humantenine, including demethylation, dehydrogenation, oxidation, dehydrogenation and oxidation, and demethylation and oxidation, were proposed in this study. There were qualitative and quantitative species differences in the metabolism of humantenine among the four species. Conclusions: The in vitro metabolism of humantenine in HLMs, PLMs, GLMs and RLMs was studied by a sensitive and specific detection method based on HPLC/QqTOF-MS. The results indicated that there were species-related differences in the metabolism of humantenine. This work might be of great significance for the further research and explanation of species differences in terms of toxicological effects of G. elegans.

Placenta ◽  
2021 ◽  
Vol 112 ◽  
pp. e64
Masatoshi Tomi ◽  
Takehiro Nomura ◽  
Saki Noguchi ◽  
Tomohiro Nishimura

2021 ◽  
Saumya Gupta ◽  
Rishi K. Alluri ◽  
Gary J. Rose ◽  
Mark A. Bee

ABSTRACTSexual traits that promote species recognition are important drivers of reproductive isolation, especially among closely related species. Identifying neural processes that shape species differences in recognition is crucial for understanding the causal mechanisms of reproductive isolation. Temporal patterns are salient features of sexual signals that are widely used in species recognition by several taxa, including anurans. Recent advances in our understanding of temporal processing by the anuran auditory system provide an excellent opportunity to investigate the neural basis of species-specific recognition. The anuran inferior colliculus (IC) consists of neurons that are selective for temporal features of calls. Of potential relevance are auditory neurons known as interval-counting neurons (ICNs) that are often selective for the pulse rate of conspecific advertisement calls. Here, we took advantage of a species differences in temporal selectivity for pulsatile advertisement calls exhibited by two cryptic species of gray treefrog (Hyla chrysoscelis and Hyla versicolor) to test the hypothesis that ICNs mediate acoustic species recognition. We tested this hypothesis by examining the extent to which the threshold number of pulses required to elicit behavioral responses from females and neural responses from ICNs was similar within each species but potentially different between the two species. In support of our hypothesis, we found that a species difference in behavioral pulse number thresholds corresponded closely to a parallel species difference in neural pulse number thresholds. However, this relationship held only for ICNs that exhibited band-pass tuning for conspecific pulse rates. Together, these findings suggest that differences in temporal processing of a subset of ICNs provide a mechanistic explanation for reproductive isolation between two cryptic and syntopically breeding treefrog species.Summary StatementTemporal processing by a subset of midbrain auditory neurons plays key roles in decoding information about species identity in anurans.

Sign in / Sign up

Export Citation Format

Share Document