Fertilization acid of sea urchin eggs is not a consequence of cortical granule exocytosis

1976 ◽  
Vol 197 (1) ◽  
pp. 127-133 ◽  
Author(s):  
Miles Paul ◽  
James D. Johnson ◽  
David Epel
1991 ◽  
Vol 113 (4) ◽  
pp. 769-778 ◽  
Author(s):  
T Whalley ◽  
I Crossley ◽  
M Whitaker

We have investigated the role of protein phosphorylation in the control of exocytosis in sea urchin eggs by treating eggs with a thio-analogue of ATP. ATP gamma S (adenosine 5'-O-3-thiotriphosphate) is a compound which can be used as a phosphoryl donor by protein kinases, leading to irreversible protein thiophosphorylation (Gratecos, D., and E.H. Fischer. 1974. Biochem. Biophys. Res. Commun. 58:960-967). Microinjection of ATP gamma S inhibits cortical granule exocytosis, but has no effect on the sperm-egg signal transduction mechanisms which normally cause exocytosis by generating an increase in [Ca2+]i. ATP gamma S requires cytosolic factors for its inhibition of cortical granule exocytosis: it does not affect exocytosis when applied directly to the isolated exocytotic apparatus. Our data suggest that ATP gamma S irreversibly inhibits exocytosis via thiophosphorylation of proteins associated with the egg cortex. We have identified two thiophosphorylated proteins (33 and 27 kD) that are associated with the isolated exocytotic apparatus. They may mediate the inhibition of exocytosis by ATP gamma S. In addition, we show that okadaic acid, an inhibitor of phosphoprotein phosphatases, prevents cortical granule exocytosis at fertilization without affecting calcium mobilization. Like ATP gamma S, okadaic acid has no effect on exocytosis in vitro. Our results suggest that an inhibitory phosphoprotein can obstruct calcium-stimulated exocytosis in sea urchin eggs; on the other hand, they do not readily support the idea that a protein phosphatase is an essential component of the mechanism controlling exocytosis.


2003 ◽  
Vol 301 (1) ◽  
pp. 13-16 ◽  
Author(s):  
Juana López-Godı́nez ◽  
Teresa I. Garambullo ◽  
Guadalupe Martı́nez-Cadena ◽  
Jesús Garcı́a-Soto

1995 ◽  
Vol 131 (5) ◽  
pp. 1183-1192 ◽  
Author(s):  
T Whalley ◽  
M Terasaki ◽  
M S Cho ◽  
S S Vogel

At fertilization in sea urchin eggs, elevated cytosolic Ca2+ leads to the exocytosis of 15,000-18,000 1.3-microns-diam cortical secretory granules to form the fertilization envelope. Cortical granule exocytosis more than doubles the surface area of the egg. It is thought that much of the added membrane is retrieved by subsequent endocytosis. We have investigated how this is achieved by activating eggs in the presence of aqueous- and lipid-phase fluorescent dyes. We find rapid endocytosis of membrane into 1.5-microns-diam vesicles starting immediately after cortical granule exocytosis and persisting over the following 15 min. The magnitude of this membrane retrieval can compensate for the changes in the plasma membrane of the egg caused by exocytosis. This membrane retrieval is not stimulated by PMA treatment which activates the endocytosis of clathrin-coated vesicles. When eggs are treated with short wave-length ultraviolet light, cortical granule exocytosis still occurs, but granule cores fail to disperse. After egg activation, large vesicles containing semi-intact cortical granule protein cores are observed. These data together with experiments using sequential pulses of fluid-phase markers support the hypothesis that the bulk of membrane retrieval immediately after cortical granule exocytosis is achieved through direct retrieval into large endocytotic structures.


Zygote ◽  
1998 ◽  
Vol 6 (1) ◽  
pp. 55-63 ◽  
Author(s):  
John C. Matese ◽  
David R. McClay

SummaryIn sea urchin eggs, fertilisation is followed by a calcium wave, cortical granule exocytosis and fertilisation envelope elevation. Both the calcium wave and cortical granule exocytosis sweep across the egg in a wave initiated at the point of sperm entry. Using differential interference contrast (DIC) microscopy combined with laser scanning confocal microscopy, populations of cortical granules undergoing calcium-induced exocytosis were observed in living urchin eggs. Calcium imaging using the indicator Calcium Green-dextran was combined with an image subtraction technique for visual isolation of individual exocytotic events. Relative fluorescence levels of the calcium indicator during the fertilisation wave were compared with cortical fusion events. In localised regions of the egg, there is a 6s delay between the detection of calcium release and fusion of cortical granules. The rate of calcium accumulation was altered experimentally to ask whether this delay was necessary to achieve a threshold concentration of calcium to trigger fusion, or was a time-dependent activation of the cortical granule fusion apparatus after the ‘triggering’ event. Calcium release rate was attenuated by blocking inositol 1,4,5-triphospate (InsP3)-gated channels with heparin. Heparin extended the time necessary to achieve a minimum concentration of calcium at the sites of cortical granule exocytosis. The data are consistent with the conclusion that much of the delay observed normally is necessary to reach threshold concentration of calcium. Cortical granules then fuse with the plasma membrane. Further, once the minimum threshold calcium concentration is reached, cortical granule fusion with the plasma membrane occurs in a pattern suggesting that cortical granules are non-uniform in their calcium sensitivity threshold.


1996 ◽  
Vol 134 (2) ◽  
pp. 329-338 ◽  
Author(s):  
S S Vogel ◽  
P S Blank ◽  
J Zimmerberg

We have investigated the consequences of having multiple fusion complexes on exocytotic granules, and have identified a new principle for interpreting the calcium dependence of calcium-triggered exocytosis. Strikingly different physiological responses to calcium are expected when active fusion complexes are distributed between granules in a deterministic or probabilistic manner. We have modeled these differences, and compared them with the calcium dependence of sea urchin egg cortical granule exocytosis. From the calcium dependence of cortical granule exocytosis, and from the exposure time and concentration dependence of N-ethylmaleimide inhibition, we determined that cortical granules do have spare active fusion complexes that are randomly distributed as a Poisson process among the population of granules. At high calcium concentrations, docking sites have on average nine active fusion complexes.


2000 ◽  
Vol 6 (S2) ◽  
pp. 966-967
Author(s):  
Amitabha Chakrabarti ◽  
Heide Schatten

Cortical granules are specialized Golgi-derived membrane-bound secretory granules that are located beneath the plasma membrane in unfertilized sea urchin eggs. Upon fertilization cortical granules discharge in a reaction induced by calcium and release their contents between the plasma membrane and a thin vitelline layer that lines the plasma membrane. Microvilli at the plasma membrane elongate incorporting cortical granule membranes during elongation. The vitelline layer elevates and becomes the egg's fertilization coat that hardens and serves as physical block to polyspermy. While we do not understand the precise mechanisms that participate in cortical granule discharge it is believed that actin plays a role in this process. Because actin and calcium metabolism is affected in aging cells we investigated if cortical granule secretion is affected in aging sea urchin eggs.Lytechinus pictus eggs were obtained by intracoelomic injection of 0.5M KCI to release the eggs into sea water at 23°C.


1994 ◽  
Vol 302 (2) ◽  
pp. 391-396 ◽  
Author(s):  
T Whalley ◽  
A Sokoloff

It is known that sea-urchin egg cortical-granule exocytosis is inhibited by agents such as N-ethylmaleimide (NEM) which modify thiol groups. The fusion-related proteins modified by these agents have yet to be identified, nor is there information regarding the topography of these thiol groups. Furthermore, the step in cortical-granule exocytosis at which these thiol groups participate is unknown. In this study we have investigated the topological properties of, and the temporal requirement for the function of, the fusion-related thiol groups by treating the isolated exocytotic apparatus with high-molecular-mass dextrans and BSA carrying thiol-reactive 3-(2-pyridyldithio)propionate groups. The dextran derivatives inhibited exocytosis. The BSA derivative was much less inhibitory. Inhibition was reversed by treatment with dithiothreitol. When NEM was added to the dextran-derivative-treated exocytotic apparatus, treatment with dithiothreitol completely reversed inhibition, indicating that the dextran derivatives inhibit by reacting at the NEM-sensitive sites. A pulse of Ca2+ applied in the presence of inhibitors did not trigger any fusion following the removal of the inhibitor by dithiothreitol. These data show that the thiol groups, the modification of which by NEM inhibits exocytosis, are exposed to the medium in terms of their accessibility to macromolecules. They also show that the fusion-related thiol groups are required during the Ca(2+)-dependent stage of exocytosis.


Methods ◽  
1994 ◽  
Vol 6 (1) ◽  
pp. 82-92 ◽  
Author(s):  
Nadeem I. Shafi ◽  
Steven S. Vogel ◽  
Joshua Zimmerberg

1995 ◽  
Vol 108 (6) ◽  
pp. 2293-2300 ◽  
Author(s):  
M. Terasaki

A Ca2+ wave at fertilization triggers cortical granule exocytosis in sea urchin eggs. New methods for visualizing exocytosis of individual cortical granules were developed using fluorescent probes and confocal microscopy. Electron microscopy previously provided evidence that cortical granule exocytosis results in the formation of long-lived depressions in the cell surface. Fluorescent dextran or ovalbumin in the sea water seemed to label these depressions and appeared by confocal microscopy as disks. FM 1–43, a water-soluble fluorescent dye which labels membranes in contact with the sea water, seemed to label the membrane of these depressions and appeared as rings. In double-labeling experiments, the disk and ring labeling by the two types of fluorescent dyes were coincident to within 0.5 second. The fluorescent labeling is coincident with the disappearance of cortical granules by transmitted light microscopy, demonstrating that the labeling corresponds to cortical granule exocytosis. Fluorescent labeling was simultaneous with an expansion of the space occupied by the cortical granule, and labeling by the fluorescent dextran was found to take 0.1-0.2 second. These results are consistent with, and reinforce the previous electron microscopic evidence for, long-lived depressions formed by exocytosis; in addition, the new methods provide new ways to investigate cortical granule exocytosis in living eggs. The fluorescence labeling methods were used with the Ca2+ indicator Ca Green-dextran to test if Ca2+ and cortical granule exocytosis are closely related spatially and temporally. In any given region of the cortex, Ca2+ increased relatively slowly.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document