fluorescent dyes
Recently Published Documents


TOTAL DOCUMENTS

1976
(FIVE YEARS 485)

H-INDEX

92
(FIVE YEARS 12)

2022 ◽  
Vol 23 (2) ◽  
pp. 926
Author(s):  
Marek Mazurek ◽  
Dariusz Szczepanek ◽  
Anna Orzyłowska ◽  
Radosław Rola

Glial tumors are one of the most common lesions of the central nervous system. Despite the implementation of appropriate treatment, the prognosis is not successful. As shown in the literature, maximal tumor resection is a key element in improving therapeutic outcome. One of the methods to achieve it is the use of fluorescent intraoperative navigation with 5-aminolevulinic acid. Unfortunately, often the level of fluorescence emitted is not satisfactory, resulting in difficulties in the course of surgery. This article summarizes currently available knowledge regarding differences in the level of emitted fluorescence. It may depend on both the histological type and the genetic profile of the tumor, which is reflected in the activity and expression of enzymes involved in the intracellular metabolism of fluorescent dyes, such as PBGD, FECH, UROS, and ALAS. The transport of 5-aminolevulinic acid and its metabolites across the blood–brain barrier and cell membranes mediated by transporters, such as ABCB6 and ABCG2, is also important. Accompanying therapies, such as antiepileptic drugs or steroids, also have an impact on light emission by tumor cells. Accurate determination of the factors influencing the fluorescence of 5-aminolevulinic acid-treated cells may contribute to the improvement of fluorescence navigation in patients with highly malignant gliomas.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Genevieve E. Melling ◽  
Ross Conlon ◽  
Paschalia Pantazi ◽  
Elizabeth R. Dellar ◽  
Priya Samuel ◽  
...  

AbstractAssessing genuine extracellular vesicle (EV) uptake is crucial for understanding the functional roles of EVs. This study measured the bona fide labelling of EVs utilising two commonly used fluorescent dyes, PKH26 and C5-maleimide-Alexa633. MCF7 EVs tagged with mEmerald-CD81 were isolated from conditioned media by size exclusion chromatography (SEC) and characterised using Nanoparticle Tracking Analysis (NTA), Transmission Electron Microscopy (TEM), MACsPlex immunocapture assay and immunoblots. These fluorescently tagged EVs were subsequently stained with C5-maleimide-Alexa633 or PKH26, according to published protocols. Colocalisation of dual-labelled EVs was assessed by confocal microscopy and quantified using the Rank-Weighted Colocalisation (RWC) algorithm. We observed strikingly poor colocalisation between mEmerald-CD81-tagged EVs and C5-Maleimide-Alexa633 (5.4% ± 1.8) or PKH26 (4.6% ± 1.6), that remained low even when serum was removed from preparations. Our data confirms previous work showing that some dyes form contaminating aggregates. Furthermore, uptake studies showed that maleimide and mEmerald-CD81-tagged EVs can be often located into non-overlapping subcellular locations. By using common methods to isolate and stain EVs we observed that most EVs remained unstained and most dye signal does not appear to be EV associated. Our work shows that there is an urgent need for optimisation and standardisation in how EV researchers use these tools to assess genuine EV signals.


2022 ◽  
pp. 002215542110649
Author(s):  
Joshua T. Dodge ◽  
Andrew D. Doyle ◽  
Ana C. Costa-da-Silva ◽  
Christopher T. Hogden ◽  
Eva Mezey ◽  
...  

Multiplex immunofluorescence (mIF) is an effective technique for the maximal visualization of multiple target proteins in situ. This powerful tool is mainly limited by the spectral overlap of the currently available synthetic fluorescent dyes. The fluorescence excitation wavelengths ranging between 405 and 488 nm are rarely used in mIF imaging and serve as a logical additional slot for a fluorescent probe. In the present study, we demonstrate that the addition of 2,3,4,5,6-pentafluoroaniline to Atto 465 NHS ester, creating Atto 465-pentafluoroaniline (Atto 465-p), generates a bright nuclear stain in the violet-blue region of the visible spectrum. This allows the 405 nm excitation and emission, classically used for nuclear counterstains, to be used for the detection of another target protein. This increases the flexibility of the mIF panel and, with appropriate staining and microscopy, enables the quantitative analysis of at least six targets in one tissue section. (J Histochem Cytochem XX: XXX–XXX, XXXX)


2022 ◽  
Author(s):  
Hui Zhang ◽  
Meng Zhou ◽  
Haina Wang ◽  
Yuling Zhao ◽  
Tianzhi Yu
Keyword(s):  

2022 ◽  
Author(s):  
Jonghee Yoon

AbstractMeasuring morphological and biochemical features of tissue is crucial for disease diagnosis and surgical guidance, providing clinically significant information related to pathophysiology. Hyperspectral imaging (HSI) techniques obtain both spatial and spectral features of tissue without labeling molecules such as fluorescent dyes, which provides rich information for improved disease diagnosis and treatment. Recent advances in HSI systems have demonstrated its potential for clinical applications, especially in disease diagnosis and image-guided surgery. This review summarizes the basic principle of HSI and optical systems, deep-learning-based image analysis, and clinical applications of HSI to provide insight into this rapidly growing field of research. In addition, the challenges facing the clinical implementation of HSI techniques are discussed.


Author(s):  
Hao Wang ◽  
Hong-Wen Liang ◽  
Tian Jia ◽  
Zhenzhen Wang ◽  
Jia-Qi Wang ◽  
...  

Electron donor-acceptor (D-A) structure are the most common strategy to develop fluorescent dyes with high quantum yield in solution and the solid state. However, most of the D-A type fluorescent...


2021 ◽  
Vol 15 (1) ◽  
pp. 45
Author(s):  
Soonjyoti Das ◽  
Sapna Jain ◽  
Mohd Ilyas ◽  
Anjali Anand ◽  
Saurabh Kumar ◽  
...  

Extracellular vesicles (EVs) have emerged into a novel vaccine platform, a biomarker and a nano-carrier for approved drugs. Their accurate detection and visualization are central to their utility in varied biomedical fields. Owing to the limitations of fluorescent dyes and antibodies, here, we describe DNA aptamer as a promising tool for visualizing mycobacterial EVs in vitro. Employing SELEX from a large DNA aptamer library, we identified a best-performing aptamer that is highly specific and binds at nanomolar affinity to EVs derived from three diverse mycobacterial strains (pathogenic, attenuated and avirulent). Confocal microscopy revealed that this aptamer was not only bound to in vitro-enriched mycobacterial EVs but also detected EVs that were internalized by THP-1 macrophages and released by infecting mycobacteria. To the best of our knowledge, this is the first study that detects EVs released by mycobacteria during infection in host macrophages. Within 4 h, most released mycobacterial EVs spread to other parts of the host cell. We predict that this tool will soon hold huge potential in not only delineating mycobacterial EVs-driven pathogenic functions but also in harboring immense propensity to act as a non-invasive diagnostic tool against tuberculosis in general, and extra-pulmonary tuberculosis in particular.


Chemosensors ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 359
Author(s):  
David Milićević ◽  
Jan Hlaváč

A new approach to on-resin detection of three model proteases (trypsin, chymotrypsin, and thrombin) has been developed, while at the same time already described methodology for simultaneous detection of two enzymes (trypsin and chymotrypsin) has been additionally generalized. Appropriate immobilized substrates, comprising specifically cleavable peptide sequences capped with fluorescent dyes, have been synthesized on Rink Amide PEGA resin or Amino PEGA resin modified with backbone amide linker (BAL). Resulting solid support-bound probes were then dispersed into Tris-HCl buffer solution (pH = 8.0) and subjected to enzymatic cleavage. Liberated fluorophores have been tracked by fluorescence measuring. The competitive activities of studied proteases towards the thrombin probe have been efficiently limited and controlled by employing a Bowman-Birk inhibitor into a system.


2021 ◽  
Vol 14 ◽  
Author(s):  
Tobias Ruff ◽  
Christian Peters ◽  
Akihiro Matsumoto ◽  
Stephan J. Ihle ◽  
Pilar Alcalá Morales ◽  
...  

The mammalian retina extracts a multitude of diverse features from the visual scene such as color, contrast, and direction of motion. These features are transmitted separately to the brain by more than 40 different retinal ganglion cell (RGC) subtypes. However, so far only a few genetic markers exist to fully characterize the different RGC subtypes. Here, we present a novel genetic Flrt3-CreERT2 knock-in mouse that labels a small subpopulation of RGCs. Using single-cell injection of fluorescent dyes in Flrt3 positive RGCs, we distinguished four morphological RGC subtypes. Anterograde tracings using a fluorescent Cre-dependent Adeno-associated virus (AAV) revealed that a subgroup of Flrt3 positive RGCs specifically project to the medial terminal nucleus (MTN), which is part of the accessory optic system (AOS) and is essential in driving reflex eye movements for retinal image stabilization. Functional characterization using ex vivo patch-clamp recordings showed that the MTN-projecting Flrt3 RGCs preferentially respond to downward motion in an ON-fashion. These neurons distribute in a regular pattern and most of them are bistratified at the level of the ON and OFF bands of cholinergic starburst amacrine cells where they express the known ON-OFF direction-selective RGC marker CART. Together, our results indicate that MTN-projecting Flrt3 RGCs represent a new functionally homogeneous AOS projecting direction-selective RGC subpopulation.


2021 ◽  
Author(s):  
Yuliang Chen ◽  
Kaijie Lai ◽  
Jinmi Cai ◽  
Yicheng Li ◽  
Haibo Wang

Abstract Chirality plays a pivotal role in drugs, agrochmeicals and food additives et al. The enantiomers of a chiral molecule often show huge difference in bioactivity, metabolism, and toxicity et al. thereby, the recognition of chiral molecules shows an increasingly important priority, and has become an important focus and frontier in medicine, biochemistry and other fields. In this paper, a novel method for chiral fluorescence recognition based on anthracene fluorescent dyes(AD) ⊂ water-soluble pillar[5] arene containing phosphonic acid group(PWP[5]) is developed. The AD as guest molecule can complex with PWP[5] to form 1:1 AD ⊂ PWP[5] assembly, and this assembly can be further used as a fluorescent probe to identify D/L-phenylalanine and D/L-phenylalaninol by fluorescent titration. The fluorescence intensity of the assembly was significantly reduced for D-phenylalanine and D-phenylalaninol, while L-phenylalanine or L-phenylalaninol was added to AD ⊂ PWP[5] assembly, the fluorescence intensity of the assembly almost unchanged. Hence, the chiral recognition based on assembly between the achiral fused ring fluorescent dye and achiral PWP[5] was developed.


Sign in / Sign up

Export Citation Format

Share Document