calcium wave
Recently Published Documents


TOTAL DOCUMENTS

149
(FIVE YEARS 15)

H-INDEX

36
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Zedong Bi ◽  
Guozhang Chen ◽  
Dongping Yang ◽  
Yu Zhou

The way in which the brain modifies synapses to improve the performance of complicated networks remains one of the biggest mysteries in neuroscience. Existing proposals lack sufficient experimental support, and neglect inter-cellular signaling pathways ubiquitous in the brain. Here we show that the heterosynaptic plasticity between hippocampal or cortical pyramidal cells mediated by diffusive nitric oxide and astrocyte calcium wave, together with flexible dendritic gating of somatostatin interneurons, implies an evolutionary algorithm (EA). In simulation, this EA is able to train deep networks with biologically plausible binary weights in MNIST classification and Atari-game playing tasks up to performance comparable with continuous-weight networks trained by gradient-based methods. Our work leads paradigmatically fresh understanding of the brain learning mechanism.


Author(s):  
D'Artagnan Greene ◽  
Abouzar Kaboudian ◽  
J.A. Wasserstrom ◽  
Flavio Fenton ◽  
Yohannes Shiferaw
Keyword(s):  

Glia ◽  
2021 ◽  
Author(s):  
Adeline Orts‐Del'Immagine ◽  
Mahalakshmi Dhanasekar ◽  
François‐Xavier Lejeune ◽  
Julian Roussel ◽  
Claire Wyart
Keyword(s):  

Author(s):  
María Berenice Soria-Ortiz ◽  
Pamela Reyes-Ortega ◽  
Ataúlfo Martínez-Torres ◽  
Daniel Reyes-Haro

Autism spectrum disorders (ASD) are pervasive neurodevelopmental conditions detected during childhood when delayed language onset and social deficits are observed. Children diagnosed with ASD frequently display sensorimotor deficits associated with the cerebellum, suggesting a dysfunction of synaptic circuits. Astroglia are part of the tripartite synapses and postmortem studies reported an increased expression of the glial fibrillary acidic protein (GFAP) in the cerebellum of ASD patients. Astroglia respond to neuronal activity with calcium transients that propagate to neighboring cells, resulting in a functional response known as a calcium wave. This form of intercellular signaling is implicated in proliferation, migration, and differentiation of neural precursors. Prenatal exposure to valproate (VPA) is a preclinical model of ASD in which premature migration and excess of apoptosis occur in the internal granular layer (IGL) of the cerebellum during the early postnatal period. In this study we tested calcium wave propagation in the IGL of mice prenatally exposed to VPA. Sensorimotor deficits were observed and IGL depolarization evoked a calcium wave with astrocyte recruitment. The calcium wave propagation, initial cell recruitment, and mean amplitude of the calcium transients increased significantly in VPA-exposed mice compared to the control group. Astrocyte recruitment was significantly increased in the VPA model, but the mean amplitude of the calcium transients was unchanged. Western blot and histological studies revealed an increased expression of GFAP, higher astroglial density and augmented morphological complexity. We conclude that the functional signature of the IGL is remarkably augmented in the preclinical model of autism.


Open Biology ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 210067
Author(s):  
Anna H. York-Andersen ◽  
Benjamin W. Wood ◽  
Elise L. Wilby ◽  
Alexander S. Berry ◽  
Timothy T. Weil

Egg activation is a series of highly coordinated processes that prepare the mature oocyte for embryogenesis. Typically associated with fertilization, egg activation results in many downstream outcomes, including the resumption of the meiotic cell cycle, translation of maternal mRNAs and cross-linking of the vitelline membrane. While some aspects of egg activation, such as initiation factors in mammals and environmental cues in sea animals, have been well-documented, the mechanics of egg activation in insects are less well-understood. For many insects, egg activation can be triggered independently of fertilization. In Drosophila melanogaster , egg activation occurs in the oviduct resulting in a single calcium wave propagating from the posterior pole of the oocyte. Here we use physical manipulations, genetics and live imaging to demonstrate the requirement of a volume increase for calcium entry at egg activation in ex vivo mature Drosophila oocytes. The addition of water, modified with sucrose to a specific osmolarity, is sufficient to trigger the calcium wave in the mature oocyte and the downstream events associated with egg activation. We show that the swelling process is regulated by the conserved osmoregulatory channels, aquaporins and DEGenerin/Epithelial Na + channels. Furthermore, through pharmacological and genetic disruption, we reveal a concentration-dependent requirement of transient receptor potential M channels to transport calcium, most probably from the perivitelline space, across the plasma membrane into the mature oocyte. Our data establish osmotic pressure as a mechanism that initiates egg activation in Drosophila and are consistent with previous work from evolutionarily distant insects, including dragonflies and mosquitos, and show remarkable similarities to the mechanism of egg activation in some plants.


2021 ◽  
Author(s):  
María Berenice Soria-Ortiz ◽  
Atáulfo Martínez Torres ◽  
Daniel Reyes-Haro

Autism spectrum disorders (ASD) are pervasive neurodevelopmental conditions detected during childhood when delayed language onset and social deficits are observed. Children diagnosed with ASD frequently display sensorimotor deficits associated with the cerebellum, suggesting a dysfunction of synaptic circuits. Astroglia are part of the tripartite synapses and postmortem studies reported an increased expression of the glial fibrillary acidic protein (GFAP) in the cerebellum of ASD patients. Astroglia respond to neuronal activity with calcium transients that propagate to neighboring cells, resulting in a functional network response known as a calcium wave. This form of intercellular signaling is implicated in proliferation, migration, and differentiation of neural precursors. Prenatal exposure to valproate (VPA) is a preclinical model of ASD in which premature migration and excess of apoptosis occur in the internal granular layer (IGL) of the cerebellum during the early postnatal period. In this study we tested calcium wave propagation in the IGL of mice prenatally exposed to VPA. Sensorimotor and social deficits were observed and IGL depolarization evoked a calcium wave with astrocyte recruitment. The calcium wave propagation, initial cell recruitment, and mean amplitude of the calcium transients increased significantly in VPA-exposed mice compared to the control group. Astrocyte recruitment was significantly increased in the VPA model, but the mean amplitude of the calcium transients was unchanged. Western blot and histological studies revealed an increased expression of GFAP and higher astroglial density. We conclude that the functional network of the IGL is remarkably augmented in the preclinical model of autism.


2021 ◽  
Vol 12 ◽  
Author(s):  
Márcia R. Vagos ◽  
Hermenegild Arevalo ◽  
Jordi Heijman ◽  
Ulrich Schotten ◽  
Joakim Sundnes

In atrial cardiomyocytes without a well-developed T-tubule system, calcium diffuses from the periphery toward the center creating a centripetal wave pattern. During atrial fibrillation, rapid activation of atrial myocytes induces complex remodeling in diffusion properties that result in failure of calcium to propagate in a fully regenerative manner toward the center; a phenomenon termed “calcium silencing.” This has been observed in rabbit atrial myocytes after exposure to prolonged rapid pacing. Although experimental studies have pointed to possible mechanisms underlying calcium silencing, their individual effects and relative importance remain largely unknown. In this study we used computational modeling of the rabbit atrial cardiomyocyte to query the individual and combined effects of the proposed mechanisms leading to calcium silencing and abnormal calcium wave propagation. We employed a population of models obtained from a newly developed model of the rabbit atrial myocyte with spatial representation of intracellular calcium handling. We selected parameters in the model that represent experimentally observed cellular remodeling which have been implicated in calcium silencing, and scaled their values in the population to match experimental observations. In particular, we changed the maximum conductances of ICaL, INCX, and INaK, RyR open probability, RyR density, Serca2a density, and calcium buffering strength. We incorporated remodeling in a population of 16 models by independently varying parameters that reproduce experimentally observed cellular remodeling, and quantified the resulting alterations in calcium dynamics and wave propagation patterns. The results show a strong effect of ICaL in driving calcium silencing, with INCX, INaK, and RyR density also resulting in calcium silencing in some models. Calcium alternans was observed in some models where INCX and Serca2a density had been changed. Simultaneously incorporating changes in all remodeled parameters resulted in calcium silencing in all models, indicating the predominant role of decreasing ICaL in the population phenotype.


2021 ◽  
Author(s):  
Anna H. York-Andersen ◽  
Benjamin W. Wood ◽  
Elise L. Wilby ◽  
Alexander S. Berry ◽  
Timothy T. Weil

ABSTRACTEgg activation is a series of highly coordinated processes that prepare the mature oocyte for embryogenesis. Typically associated with fertilisation, egg activation results in many downstream outcomes, including the resumption of the meiotic cell cycle, translation of maternal mRNAs and cross-linking of the vitelline membrane. While some aspects of egg activation, such as initiation factors in mammals and environmental cues in sea animals, have been well-documented, the mechanics of egg activation in insects are less well understood. For many insects, egg activation can be triggered independently of fertilisation. In Drosophila melanogaster, egg activation occurs in the oviduct resulting in a single calcium wave propagating from the posterior pole of the oocyte.Here we use physical manipulations, genetics and live imaging to demonstrate the requirement of a volume increase for calcium entry at egg activation in mature Drosophila oocytes. The addition of water, modified with sucrose to a specific osmolarity, is sufficient to trigger the calcium wave in the mature oocyte and the downstream events associated with egg activation. We show that the swelling process is regulated by the conserved osmoregulatory channels, aquaporins (AQPs) and DEGenerin/Epithelial Na+ (DEG/ENaC) channels. Furthermore, through pharmacological and genetic disruption, we reveal a concentration-dependent requirement of Trpm channels to transport calcium, most likely from the perivitelline space, across the plasma membrane into the mature oocyte.Our data establishes osmotic pressure as the mechanism that initiates egg activation in Drosophila and is consistent with previous work from evolutionarily distant insects, including dragonflies and mosquitos, and shows remarkable similarities to the mechanism of egg activation in some plants.


Sign in / Sign up

Export Citation Format

Share Document