Free amino acids and cell volume regulation in the elasmobranch,Raja erinacea

1981 ◽  
Vol 215 (3) ◽  
pp. 371-377 ◽  
Author(s):  
Leon Goldstein
1987 ◽  
Vol 252 (4) ◽  
pp. R768-R773
Author(s):  
M. A. Lang

The euryhaline crab, Callinectes sapidus, behaves both as an osmoregulator when equilibrated in salines in the range of 800 mosM and below and an osmoconformer when equilibrated in salines above 800 mosM. There exists a close correlation between osmoregulation seen in the whole animal in vivo and cell volume regulation studied in vitro. Hyperregulation of the hemolymph osmotic pressure and cell volume regulation both occurred in salines at approximately 800 mosM and below. During long-term equilibration of the crabs to a wide range of saline environments, the total concentration of hemolymph amino acids plus taurine remained below 3 mM. During the first 6 h after an acute osmotic stress to the whole animal, the hemolymph osmotic pressure and Na activity gradually decreased, whereas the free amino acids remained below 3 mM. As the hemolymph osmotic pressure decreased below approximately 850 mosM, the amino acid level began to increase to 17-25 mM. This change was primarily due to increases in glycine, proline, taurine, and alanine. The likely source of the increase in hemolymph free amino acids in vivo is the free amino acid loss from muscle cells observed during cell volume regulation in vitro.


Author(s):  
A. J. S. Hawkins ◽  
T. J. Hilbish

To resolve the sources of amino nitrogen which is accumulated as intracellular solute during hyperosmotic volume regulation, components of protein metabolism were monitored during compensation for a change from 15 to 30% salinity in the blue mussel, Mytilus edulis L. Net solute gain stemmed primarily from a marked reduction in total output from the metabolic pool of free amino acids, most of this ‘saving’ resulting from slower whole-body protein synthesis, and the remainder from lower nitrogenous excretion. Indeed, total inputs to the metabolic pool of free amino acids actually decreased over the period of net solute gain at 30%. Associated contributions from dietary assimilation, de novo synthesis and the direct uptake of dissolved amino acids were each negligible, indicating that breakdown products from endogenous body protein were the only significant source of amino nitrogen accumulated during hyperosmotic regulation. This accumulation represented more than 3% of soft-tissue protein nitrogen within the whole animal. We therefore impress that the excretion, during hyposaline adjustment, of all nitrogen previously accumulated as solute in response to equivalent hypersaline change, represents a major component cost of cell volume regulation, and which helps to explain stress and even mortality consequent upon what may be small but frequent fluctuations of salinity.


2015 ◽  
Vol 75 (2) ◽  
pp. 372-379 ◽  
Author(s):  
CCM. Mazzarelli ◽  
MR. Santos ◽  
RV. Amorim ◽  
A. Augusto

Probably as a function of their wide geographical distribution, the different population of Macrobrachium amazonicum shrimp may present distinct physiological, biochemical, reproductive, behavioral, and ecological patterns. These differences are so accentuated that the existence of allopatric speciation has been suggested, although initial studies indicate that the genetic variability of populations happen at an intraspecific level. Among the biological responses described for M. amazonicum populations, those regarding osmoregulation and metabolism play a key role for being related to the occupation of diverse habitats. To this effect, we investigated osmoregulation through the role of free amino acids in cell volume control and metabolism, through oxygen consumption in larvae (zoeae I, II, V and IX) and/or post-larvae of a M. amazonicum population from Amazon, kept in aquaculture fish hatcheries in the state of São Paulo. The results add information regarding the existence of distinct physiological responses among M. amazonicum populations and suggest that possible adjustments to metabolism and to the use of free amino acids as osmolytes of the regulation of the larvae and post-larvae cell volume depend on the appearance of structures responsible for hemolymph osmoregulation like, for example, the gills. In this respect, we verified that zoeae I do not alter their metabolism due to the exposition to fresh or brackish water, but they reduce intracellular concentration of free amino acids when exposed to fresh water, what may suggest the inexistence or inefficient performance of the structures responsible for volume regulation and hemolymph composition. On the other hand, in zoeae II and V exposed to fresh and brackish water, metabolism alterations were not followed by changes in free amino acids concentration. Thus it is possible, as the structures responsible for osmoregulation and ionic regulation become functional, that the role of free amino acids gets diminished and oxygen consumption elevated, probably due to greater energy expenditure with the active transportation of salts through epithelial membranes. Osmotic challenges also seem to alter throughout development, given that in zoeae II oxygen consumption is elevated on brackish water of 18, but in zoeae V it happens in fresh water. After M. amazonicum metamorphosis, free amino acids begin to play an important role as intracellular osmolytes, because we verified an increase of up to 40% in post-larvae exposed to brackish water of 18. The main free amino acids involved in cell volume regulation of ontogenetic stages evaluated were the non essential ones: glutamic acid, glycine, alanine, arginine, and proline. Interestingly, larvae from estuarine population studied here survived until the zoeae V stage in fresh water, but in some populations far from the sea, zoeae die right after eclosion in fresh water or they do not reach zoeae III stage. In addition, given that in favorable conditions caridean shrimp larvae shorten their development, we may infer that the cultivation environment, in which larvae developed in the present work, was appropriate, because almost all zoeae VIII kept on brackish water underwent metamorphosis directly to post-larvae and did not go through zoeae IX stage.


1972 ◽  
Vol 57 (3) ◽  
pp. 681-692
Author(s):  
SIDNEY K. PIERCE~JR. ◽  
MICHAEL J. GREENBERG

1. Regulation of cell volume utilizing intracellular free amino acids has been studied in isolated ventricles from marine bivalves of the genus Modiolus. 2. As in the intact animal, ventricles taken from Modiolus acclimated to various salinities show only a slight change in tissue hydration. This control over cell volume is accomplished by isosmotic intracellular regulation of taurine, alanine, glycine and proline concentrations. 3. When stressed with decreased external salinities the isolated spontaneously beating ventricle becomes quiescent for a period, and then resumes activity. During the period of quiescence ninhydrin-positive substances (NPS) are released. The duration of quiscence and the amount of NPS released increase with increasing dilution of the external medium. 4. The salinity-induced NPS efflux is composed of taurine, alanine, glycine and proline. 5. In molluscs, the amino acids utilized for volume regulation are released from the cells unchanged and are not degraded into keto-acids and ammonia as they are in the crustaceans.


Sign in / Sign up

Export Citation Format

Share Document