Deep Learning Assisted Diagnosis of Musculoskeletal Tumors Based on Contrast‐Enhanced Magnetic Resonance Imaging

Author(s):  
Keyang Zhao ◽  
Mingzi Zhang ◽  
Zhaozhi Xie ◽  
Xu Yan ◽  
Shenghui Wu ◽  
...  
PLoS Medicine ◽  
2018 ◽  
Vol 15 (11) ◽  
pp. e1002699 ◽  
Author(s):  
Nicholas Bien ◽  
Pranav Rajpurkar ◽  
Robyn L. Ball ◽  
Jeremy Irvin ◽  
Allison Park ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Qiaoliang Li ◽  
Yuzhen Xu ◽  
Zhewei Chen ◽  
Dexiang Liu ◽  
Shi-Ting Feng ◽  
...  

Objectives. To evaluate the application of a deep learning architecture, based on the convolutional neural network (CNN) technique, to perform automatic tumor segmentation of magnetic resonance imaging (MRI) for nasopharyngeal carcinoma (NPC). Materials and Methods. In this prospective study, 87 MRI containing tumor regions were acquired from newly diagnosed NPC patients. These 87 MRI were augmented to >60,000 images. The proposed CNN network is composed of two phases: feature representation and scores map reconstruction. We designed a stepwise scheme to train our CNN network. To evaluate the performance of our method, we used case-by-case leave-one-out cross-validation (LOOCV). The ground truth of tumor contouring was acquired by the consensus of two experienced radiologists. Results. The mean values of dice similarity coefficient, percent match, and their corresponding ratio with our method were 0.89±0.05, 0.90±0.04, and 0.84±0.06, respectively, all of which were better than reported values in the similar studies. Conclusions. We successfully established a segmentation method for NPC based on deep learning in contrast-enhanced magnetic resonance imaging. Further clinical trials with dedicated algorithms are warranted.


Author(s):  
Toqa A. Sadoon ◽  
Mohammed H. Ali

<p>One of the common causes of death is a brain tumor. Because of the above mentioned, early detection of a brain tumor is critical for faster treatment, and therefore there are many techniques used to visualize a brain tumor. One of these techniques is magnetic resonance imaging (MRI). On the other hand, machine learning, deep learning, and convolutional neural network (CNN) are the state of art technologies in the recent years used in solving many medical image-related problems such as classification. In this research, three types of brain tumors were classified using magnetic resonance imaging namely glioma, meningioma, and pituitary gland on the based of CNN. The dataset used in this work includes 233 patients for a total of 3,064 contrast-enhanced T1 images. In this paper, a comparison is presented between the presented model and other models to demonstrate the superiority of our model over the others. Moreover, the difference in outcome between pre- and post-data preprocessing and augmentation was discussed. The highest accuracy metrics extracted from confusion matrices are; precision of 99.1% for pituitary, sensitivity of 98.7% for glioma, specificity of 99.1%, and accuracy of 99.1% for pituitary. The overall accuracy obtained is 96.1%.</p>


Sign in / Sign up

Export Citation Format

Share Document