Role of Arabian Sea warming on the Indian summer monsoon rainfall in a regional climate model

2019 ◽  
Vol 40 (4) ◽  
pp. 2226-2238 ◽  
Author(s):  
Alok K. Mishra ◽  
Suneet Dwivedi ◽  
Sushant Das
2008 ◽  
Vol 21 (21) ◽  
pp. 5603-5623 ◽  
Author(s):  
Takeshi Izumo ◽  
Clémentde Boyer Montégut ◽  
Jing-Jia Luo ◽  
Swadhin K. Behera ◽  
Sébastien Masson ◽  
...  

Abstract The Indian summer monsoon rainfall has complex, regionally heterogeneous, interannual variations with huge socioeconomic impacts, but the underlying mechanisms remain uncertain. The upwelling along the Somalia and Oman coasts starts in late spring, peaks during the summer monsoon, and strongly cools the sea surface temperature (SST) in the western Arabian Sea. They restrict the westward extent of the Indian Ocean warm pool, which is the main moisture source for the monsoon rainfall. Thus, variations of the Somalia–Oman upwelling can have significant impacts on the moisture transport toward India. Here the authors use both observations and an advanced coupled atmosphere–ocean general circulation model to show that a decrease in upwelling strengthens monsoon rainfall along the west coast of India by increasing the SST along the Somalia–Oman coasts, and thus local evaporation and water vapor transport toward the Indian Western Ghats (mountains). Further observational analysis reveals that such decreases in upwelling are caused by anomalously weak southwesterly winds in late spring over the Arabian Sea that are due to warm SST/increased precipitation anomalies over the Seychelles–Chagos thermocline ridge of the southwestern Indian Ocean (and vice versa for years with strong upwelling/weak west Indian summer monsoon rainfall). The latter SST/precipitation anomalies are often related to El Niño conditions and the strength of the Indonesian–Australian monsoon during the previous winter. This sheds new light on the ability to forecast the poorly predicted Indian monsoon rainfall on a regional scale, helped by a proper ocean observing/forecasting system in the western tropical Indian Ocean.


2015 ◽  
Vol 28 (13) ◽  
pp. 5414-5429 ◽  
Author(s):  
Shakeel Asharaf ◽  
Bodo Ahrens

Abstract Indian summer monsoon rainfall was examined in two different greenhouse gas emission scenarios: the Special Report on Emissions Scenarios (SRES; B1) and a similar greenhouse gas scenario, the new representative concentration pathways (RCPs; RCP4.5). The rainfall change in the climate model projections through remotely induced changes in precipitation processes and through changes in precipitation efficiency processes was discussed. To that end, two model setups were applied: 1) the regional climate model (RCM) Consortium for Small-Scale Modelling in Climate Mode (COSMO-CLM), nested in the global climate model (GCM) ECHAM5/Max Planck Institute ocean model (ECHAM5/MPIOM), applying the greenhouse gas scenario B1; and 2) the RCM nested in a newer version of the GCM, ECHAM6/MPIOM, incorporating the RCP4.5 scenario. Both GCM simulations showed a slight increase in precipitation over central India toward the end of the twenty-first century. This slight increase was the result of two largely compensating changes: increase of remotely induced precipitation and decrease of precipitation efficiency. The RCM with the scenario RCP4.5 followed this trend, but with smaller changes. However, the RCM with B1 showed a decreasing trend in precipitation because of a slightly larger absolute change of the reduced precipitation efficiency compared to the change caused by the remote processes. Changes of these processes in the scenario simulations were larger than the natural variability, as simulated in an unperturbed preindustrial greenhouse gas control (CTL) climate simulation. Results indicated that the projection of the Indian summer monsoon rainfall is still a key challenge for both the GCM and the RCM.


Sign in / Sign up

Export Citation Format

Share Document