OSL chronology of sand deposits and climate change of last 18 ka in Gurbantunggut Desert, northwest China

2011 ◽  
Vol 26 (8) ◽  
pp. 813-818 ◽  
Author(s):  
Sheng-Hua Li ◽  
Anchuan Fan
2021 ◽  
Author(s):  
Qinghong Luo ◽  
Qimin Chen ◽  
Miao He ◽  
Na Li

Using chronosequence theory and method, the characteristics of vegetation-soil coupling and structure stability of Haloxylon ammodendron plantations in the southern fringe of Gurbantunggut Desert were analyzed. The results showed, the canopy storey of H. ammodendron plantation experienced three stages, rapid growth (the age of 7 to 20), then slow growth (the age of 20 to 28) and last decline (over the age of 28). The best natural regeneration started from 17-yr-old plantation. Vegetation-soil system coupling degree (C) and coupling coordinative degree (D) of plantations with different age were not one-to-one correspondence. The system of H. ammodendron plantations always stayed in disorder recession, vegetation and soil were prone to loss type during the process of sand-fixation. Five principal components evaluated that the first rank was 42-yr-old plantation. It was inferred that the trend of the vegetation and soil system was from senescence to harmonious development. So the trend of coordinated development between vegetation and soil would be promoted, if the artificial tending and management measures strengthened.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Huiliang Liu ◽  
Daoyuan Zhang ◽  
Xuejun Yang ◽  
Zhenying Huang ◽  
Shimin Duan ◽  
...  

Seed dispersal and germination were examined for 70 species from the cold Gurbantunggut Desert in northwest China. Mean and range (3 orders of magnitude) of seed mass were smaller and narrower than those in other floras (5–8 orders of magnitude), which implies that selection favors relatively smaller seeds in this desert. We identified five dispersal syndromes (anemochory, zoochory, autochory, barochory, and ombrohydrochory), and anemochorous species were most abundant. Seed mass (F=3.50,P=0.01), seed size (F=8.31,P<0.01), and seed shape (F=2.62,P=0.04) differed significantly among the five dispersal syndromes and barochorous species were significantly smaller and rounder than the others. There were no significant correlations between seed mass (seed weight) (P=0.15), seed size (P=0.38), or seed shape (variance) (P=0.95) and germination percentage. However, germination percentages differed significantly among the dispersal syndromes (F=3.64,P=0.01) and seeds of ombrohydrochorous species had higher germination percentages than those of the other species. In the Gurbantunggut Desert, the percentage of species with seed dormancy was about 80%. In general, our studies suggest that adaptive strategies in seed dispersal and germination of plants in this area are closely related to the environment in which they live and that they are influenced by natural selection forces.


2014 ◽  
Vol 2014 ◽  
pp. 1-19 ◽  
Author(s):  
Hui-Liang Liu ◽  
Dao-Yuan Zhang ◽  
Shi-Min Duan ◽  
Xi-Yong Wang ◽  
Ming-Fang Song

Diaspore characteristics of 22 families, including 102 genera and 150 species (55 represented by seeds and 95 by fruits) from the Gurbantunggut Desert were analyzed for diaspore biological characteristics (mass, shape, color, and appendage type). The diaspore mass and shape were significantly different in phylogeny group (APG) and dispersal syndromes; vegetative periods significantly affected diaspore mass, but not diaspore shape; and ecotypes did not significantly affect diaspore mass and shape, but xerophyte species had larger diaspore mass than mesophyte species. Unique stepwise ANOVA results showed that variance in diaspore mass and shape among these 150 species was largely dependent upon phylogeny and dispersal syndromes. Therefore, it was suggested that phylogeny may constrain diaspore mass, and as dispersal syndromes may be related to phylogeny, they also constrained diaspore mass and shape. Diaspores of 85 species (56.67%) had appendages, including 26 with wings/bracts, 18 with pappus/hair, 14 with hooks/spines, 10 with awns, and 17 with other types of appendages. Different traits (mass, shape, color, appendage, and dispersal syndromes) of diaspore decided plants forming different adapted strategies in the desert. In summary, the diaspore characteristics were closely related with phylogeny, vegetative periods, dispersal syndromes, and ecotype, and these characteristics allowed the plants to adapt to extreme desert environments.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Yuguang Yang ◽  
Chengyi Zhao ◽  
Ming Han ◽  
Yike Li ◽  
Ruihong Yang

The relationship between shrub vegetation and precipitation is one important component of desert vegetation responses to climate change, but it has not been understood completely because of its complexity and nonlinearity. In this study, we used MODIS NDVI data and precipitation data from 2004 to 2012 to evaluate the relationship between the shrub vegetation and precipitation within Gurbantunggut Desert, Central Asia. Correlation analysis was employed to explore the relationship between NDVI and precipitation within growing season, within cross growing season, and on interannual scale. The results showed that NDVI could be classified into three temporal changing patterns within growing season, and NDVI was significantly correlated with the precipitation integrated by time durations and time lags within growing season; NDVI was significantly correlated with precipitation in the early growing season, but this relationship was not so obvious in the middle or late growing season; and the NDVI variational patterns depended on mean annual precipitation and the distribution of precipitation throughout the year. Precipitation had significant influence on shrub vegetation within Gurbantunggut Desert. Our findings provide basic knowledge for the relationship between precipitation and shrub vegetation, and it is helpful to understand how the desert vegetation responds to climate change in the future.


Sign in / Sign up

Export Citation Format

Share Document