global climate
Recently Published Documents


TOTAL DOCUMENTS

11244
(FIVE YEARS 4189)

H-INDEX

180
(FIVE YEARS 23)

2022 ◽  

Estuarine and coastal waters are acknowledged centres for anthropogenic impacts. Superimposed on the complex natural interactions between land, rivers and sea are the myriad consequences of human activity – a spectrum ranging from locally polluting effluents to some of the severest consequences of global climate change. For practitioners, academics and students in the field of coastal science and policy, this book examines and exemplifies current and future challenges: from upper estuaries to open coasts and adjacent seas; from tropical to temperate latitudes; from Europe to Australia. This authoritative volume marks the 50th anniversary of the Estuarine and Coastal Sciences Association, and contains a prologue by founding member Professor Richard Barnes and a short history of the Association. Individual chapters then address coastal erosion and deposition; open shores to estuaries and deltas; marine plastics; coastal squeeze and habitat loss; tidal freshwaters – saline incursion and estuarine squeeze; restoration management using remote data collection; carbon storage; species distribution and non-natives; shorebirds; Modelling environmental change; physical processes such as sediments and modelling; sea level rise and estuarine tidal dynamics; estuaries as fish nurseries; policy versus reality in coastal conservation; developments in Estuarine, coastal and marine management.


Author(s):  
Alberto S. de Melo ◽  
Yuri L. Melo ◽  
Claudivan F. de Lacerda ◽  
Pedro R. A. Viégas ◽  
Rener L. de S. Ferraz ◽  
...  

ABSTRACT Global climate change tends to intensify water unavailability, especially in semi-arid regions, directly impacting agricultural production. Cowpea is one of the crops with great socio-economic importance in the Brazilian semi-arid region, cultivated mainly under rainfed farming and considered moderately tolerant to water restriction. This species has physiological and biochemical mechanisms of adaptation to these stress factors, but there is still no clear vision of how these responses can not only allow survival, but also ensure yield advances in the field. Besides acclimation mechanisms, the exogenous application of abiotic (salicylic acid, silicon, proline, methionine, and potassium nitrate) and biotic (rhizobacteria) elicitors is promising in mitigating the effects of water restriction. The present literature review discusses the acclimation mechanisms of cowpea and some cultivation techniques, especially the application of elicitors, which can contribute to maintaining crop yield under different water scenarios. The application of elicitors is an alternative way to increase the sustainability of production in rainfed farming in semi-arid regions. However, the use of eliciting substances in cowpea still needs to be carefully explored, given the difficulties caused by genotypic and edaphoclimatic variability under field conditions.


2022 ◽  
Vol 308 ◽  
pp. 118369
Author(s):  
Quang Vu Dinh ◽  
Quang-Van Doan ◽  
Thanh Ngo-Duc ◽  
Van Nguyen Dinh ◽  
Nguyen Dinh Duc

2022 ◽  
Author(s):  
Miles P. Wilson ◽  
Gillian R. Foulger ◽  
Christopher Saville ◽  
Samuel P. Graham ◽  
Bruce R. Julian

ABSTRACT Relationships between the weather and earthquakes have been suspected for over 2400 yr. However, scientific evidence to support such relationships has grown only since the 1980s. Because faults in Earth’s crust are generally regarded as critically stressed, small changes in stress and pore-fluid pressure brought about by rainfall, snow, and atmospheric pressure and temperature variations have all been proposed to modulate seismicity at local and regional scales. Elastic static stress changes as low as 0.07 kPa and pore-fluid pressure changes as low as 0.5 kPa have been proposed to naturally trigger earthquakes. In the UK, the spatial distributions of onshore earthquakes and rainfall are highly nonuniform and may be related; the wetter and most naturally seismically active areas occur on the west side of the country. We found significant spatial and temporal relationships between rainfall amount and the number of earthquakes for 1980–2012, suggesting larger volumes of rainfall promote earthquake nucleation. Such relationships occur when human-induced seismicity is included or excluded, indicating that meteorological conditions can also modulate seismicity induced by subsurface anthropogenic activities such as coal mining. No significant relationships were observed for monthly time lags, suggesting that the triggering effect of rainfall in the UK is near-instantaneous or occurs within 1 mo. With global climate changing rapidly and extreme weather events occurring more frequently, it is possible that some global regions may also experience changes in the spatial and temporal occurrence of earthquakes in response to changes in meteorologically induced stress perturbations.


2022 ◽  
Vol 12 ◽  
Author(s):  
Peng Gao ◽  
Jie Dong ◽  
Sihan Wang ◽  
Wuhua Zhang ◽  
Tao Yang ◽  
...  

Rosa rugosa Thunb. has been explored multi-function in medicinal, edible, cosmetic, ornamental and ecological etc. However, R. rugosa natural populations have recently declined substantially in China, besides of global climate change, this species also has the defect of limiting the reproduction of itself such as the hard-to-release seed dormancy. In this study, only 30% of R. rugosa seeds were viable, and the others were incompletely developed or diseased seeds. Without stratification, morphologically complete viable seeds imbibed water but those seeds could not germinate even after seed husk removal under suitable condition to exhibit a physiological dormancy. After cold (4°C) and warm (18 ± 2°C) stratification, macromolecular substances containing carbon or nitrogen accumulated, and respiration, antioxidant enzyme activity, and gibberellin (GA3) /abscisic acid (ABA) and auxin (IAA)/ABA ratios increased significantly in seeds. Water absorption also increased as endocarps softened. Thus, physiological dormancy of seed was broken. Although warm and cold stratification increased separation between endocarp and embryo, the endocarp binding force was removed insufficiently, because only 10.20% of seeds germinated. Therefore, stratified seeds were treated with simulated bird digestion. Then, folds and cracks in loosened endocarps increased permeability, and water absorption rate increased to 64.43% compare to 21.14% in cold and warm stratification treatment. With simulated digestion, 24.20% of radicles broke through the endocarp with plumules and cambiums to develop into seedlings. Thus, the seed dormancy type of R. rugosa is physiological as seeds imbibed water and possessed fully developed embryos with a low growth potential in combination with a mechanical constraint from the endocarp. Cold stratification helped remove physiological dormancy, and additional warm stratification accelerated the process. The optimal stratification treatment was 4°C for 45 days followed by 18 ± 2°C for 15 days. After warm and cold stratification, simulated bird digestion broke the mechanical constraint from the seed covering layers. Based on this research, production of R. rugosa seedlings can be greatly increased to help protect the species from further declines.


2022 ◽  
Vol 12 ◽  
Author(s):  
Fengli Zou ◽  
Qingwu Hu ◽  
Haidong Li ◽  
Jie Lin ◽  
Yichuan Liu ◽  
...  

Grassland is the vegetation type with the widest coverage on the Qinghai-Tibet Plateau. Under the influence of multiple factors, such as global climate change and human activities, grassland is undergoing temporal and spatially different disturbances and changes, and they have a significant impact on the grassland ecosystem of the Qinghai-Tibet Plateau. Therefore, timely and dynamic monitoring of grassland disturbances and distinguishing the reasons for the changes are essential for ecological understanding and management. The purpose of this research is to propose a knowledge-based strategy to realize grassland dynamic distribution mapping and analysis of grassland disturbance changes in the region that are suitable for the Qinghai-Tibet Plateau. The purpose of this study is to propose an analysis algorithm that uses first annual mapping and then establishes temporal disturbance rules, which is applicable to the integrated exploration of disturbance changes in highland-type grasslands. The characteristic indexes of greenness and disturbance indices in the growing period were constructed and integrated with deep neural network learning to dynamically map the grassland for many years. The overall accuracy of grassland mapping was 94.11% and that of Kappa was 0.845. The results show that the area of grassland increased by 11.18% from 2001 to 2017. Then, the grassland disturbance change analysis method is proposed in monitoring the grassland distribution range, and it is found that the area of grassland with significant disturbance change accounts for 10.86% of the total area of the Qinghai-Tibet Plateau, and the disturbance changes are specifically divided into seven types. Among them, the type of degradation after disturbance mainly occurs in Tibet, whereas the main types of vegetation greenness increase in Qinghai and Gansu. At the same time, the study finds that climate change, altitude, and human grazing activities are the main factors affecting grassland disturbance changes in the Qinghai-Tibet Plateau, and there are spatial differences.


2022 ◽  
Vol 4 (4) ◽  
pp. 978-989
Author(s):  
Ahmad Fawaiq Suwanan ◽  
Syahrul Munir ◽  
Santi Merlinda

Sovereign Sukuk has become a promising instrument for a country to overcome difficulties in financing government projects. Sukuk is a financial instrument for the Islamic capital market with a low level of risk. Green sukuk becomes popular since most of the conventional investment activities ignore the environment aspect. Starting in 2018, Indonesian government has developed a green sukuk scheme as a financing instrument for environmentally friendly projects to reduce the impact of global climate change. This study aims to analyze the role and challenges of green sukuk for climate change resilience in highly vulnerable areas during the Covid-19 crisis. This study is conducted through a qualitative method with a phenomenological approach. Data collections are carried out through literature studies and case studies on some climate projects in highly vulnerable areas in Indonesia. The results show that during the Covid-19 pandemic, green sukuk has contributed an important impact for climate change resilience in highly vulnerable areas. There are some challenges in the development of green sukuk. The lack of awareness of social risks as well as environmental risks have become main challenges. In the future, the decision policy makers should provide greater incentives and a more inclusive legal umbrella for green financing schemes.


Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 258
Author(s):  
Laura Gruppuso ◽  
Alberto Doretto ◽  
Elisa Falasco ◽  
Stefano Fenoglio ◽  
Michele Freppaz ◽  
...  

Streams and rivers are becoming increasingly intermittent in Alpine regions due to the global climate change and related increases of local water abstractions, making it fundamental to investigate the occurrence of supraseasonal drying events and their correlated effects. We aimed to investigate leaf litter decomposition, the C:N ratio of the litter, and changes in associated macroinvertebrate communities in three reaches of the Po River: One upstream, consistently perennial, a perennial mid-reach with high hydrological variability, and an intermittent downstream reach. We placed leaf litter bags of two leaf types—chestnut and oak; both showed comparable decomposition rates, but the remaining litter mass was different and was attributed to the C:N ratio and palatability. Furthermore, (1) in perennial reaches, leaf litter decomposed faster than in the intermittent ones; (2) in intermittent reaches, the C:N ratio showed a decreasing trend in both leaf types, indicating that drying affected the nitrogen consumption, therefore the conditioning phase; (3) associated macroinvertebrate communities were richer and more stable in perennial reaches, where a higher richness and abundance of EPT taxa and shredders was observed. Our results suggest that the variations in the hydrology of mountain streams caused by global climate change could significantly impact on functional processes and biodiversity of benthic communities.


Aerospace ◽  
2022 ◽  
Vol 9 (1) ◽  
pp. 41
Author(s):  
Sigrun Matthes ◽  
David S. Lee ◽  
Ruben Rodriguez De De Leon ◽  
Ling Lim ◽  
Bethan Owen ◽  
...  

When working towards regulation of supersonic aviation, a comprehensive understanding of the global climate effect of supersonic aviation is required in order to develop future regulatory issues. Such research requires a comprehensive overview of existing scientific literature having explored the climate effect of aviation. This review article provides an overview on earlier studies assessing the climate effects of supersonic aviation, comprising non-CO2 effects. An overview on the historical evaluation of research focussing on supersonic aviation and its environmental impacts is provided, followed by an overview on concepts explored and construction of emission inventories. Quantitative estimates provided for individual effects are presented and compared. Subsequently, regulatory issues related to supersonic transport are summarised. Finally, requirements for future studies, e.g., in emission scenario construction or numerical modelling of climate effects, are summarised and main conclusions discussed.


Sign in / Sign up

Export Citation Format

Share Document