scholarly journals Ultrafast Nonlinear Optical Properties of a Graphene Saturable Mirror in the 2 μm Wavelength Region (Laser Photonics Rev. 11(5)/2017)

2017 ◽  
Vol 11 (5) ◽  
pp. 1770051
Author(s):  
Gaozhong Wang ◽  
Kangpeng Wang ◽  
Beata M. Szydłowska ◽  
Aidan A. Baker-Murray ◽  
Jing Jing Wang ◽  
...  
2011 ◽  
Vol 2011 ◽  
pp. 1-9
Author(s):  
Bernard de Dormale ◽  
Vo-Van Truong

A model for linear and nonlinear optical properties of a composite material consisting of spheroidal metal inclusions embedded in a host medium has been formulated using an effective medium approach. Both aligned and randomly oriented spheroids have been considered, and the results obtained showed a considerable difference between the two situations. Numerical calculations for metallic Au inclusions in a glass matrix have shown that the linear absorption in the case of aligned spheroids with their symmetry axis parallel to the z-axis is largely dependent on the depolarization factor, exhibiting an absorption in the vicinity of 500 nm when the depolarization factor in the direction parallel to the rotational symmetry axis is small. This structure shifts progressively to higher wavelengths when this depolarization factor is increased. In the case of randomly oriented spheroids, contributions from the different particle depolarization factors are present and prominent structures in the linear absorption appear in the long wavelength region, beyond 700 nm. Nonlinear optical properties for both aligned and randomly oriented spheroids also show a strong dependence on the depolarization factor and significant enhancements of these properties can be observed, suggesting possible tailoring of composite properties for various applications.


2017 ◽  
Vol 11 (5) ◽  
pp. 1700166 ◽  
Author(s):  
Gaozhong Wang ◽  
Kangpeng Wang ◽  
Beata M. Szydłowska ◽  
Aidan A. Baker-Murray ◽  
Jing Jing Wang ◽  
...  

1999 ◽  
Vol 598 ◽  
Author(s):  
Xuan-Ming Duan ◽  
Tatsuo Wada ◽  
Shuji Okada ◽  
Hidetoshi Oikawa ◽  
Hiro Matsuda ◽  
...  

ABSTRACTA series of novel ionic chromophores consisting of a carbazole moiety and pyridinium rings connected by a double bond have been designed and synthesized as nonlinear optical materials. Their linear and nonlinear optical properties were investigated by semiempirical calculation and experiment. The absorption maximum wavelengths (lmax) of these ionic chromophores showed shifting to longer wavelength region than their corresponding electrically neutral compounds. These ionic chromophores possess large first hyperpolarizabilities (b).


2014 ◽  
Vol 6 (2) ◽  
pp. 1178-1190
Author(s):  
A. JOHN PETER ◽  
Ada Vinolin

Simultaneous effects of magnetic field, pressure and temperature on the exciton binding energies are found in a 9.0 1.0 6.0 4.0 GaAs P / GaAs P quantum dot. Numerical calculations are carried out taking into consideration of spatial confinement effect. The cylindrical system is taken in the present problem with the strain effects. The electronic properties and the optical properties are found with the combined effects of magnetic field strength, hydrostatic pressure and temperature values. The exciton binding energies and the nonlinear optical properties are carried out taking into consideration of geometrical confinement and the external perturbations.Compact density approach is employed to obtain the nonlinear optical properties. The optical rectification coefficient is obtained with the photon energy in the presence of pressure, temperature and external magnetic field strength. Pressure and temperature dependence on nonlinear optical susceptibilities of generation of second and third order harmonics as a function of incident photon energy are brought out in the influence of magnetic field strength. The result shows that the electronic and nonlinear optical properties are significantly modified by the applications of external perturbations in a 9.0 1.0 6.0 4.0 GaAs P / GaAs P quantum dot.


1990 ◽  
Author(s):  
Tapio T. Rantala ◽  
Mark I. Stockman ◽  
Daniel A. Jelski ◽  
Thomas F. George

Sign in / Sign up

Export Citation Format

Share Document