field strength
Recently Published Documents


TOTAL DOCUMENTS

3896
(FIVE YEARS 752)

H-INDEX

89
(FIVE YEARS 10)

Author(s):  
Lei Tian ◽  
Limei Song ◽  
Yu Zheng ◽  
Jinhai Wang

Multi-coil magnetic stimulation has advantages over single-coil magnetic stimulation, such as more accurate targeting and larger stimulation range. In this paper, a 4 × 4 array multichannel magnetic stimulation system based on a submillimeter planar square spiral coil is proposed. The effects of multiple currents with different directions on the electromagnetic field strength and the focusing zone of the array-structured magnetic stimulation system are studied. The spatial distribution characteristics of the electromagnetic field are discussed. In addition, a method is proposed that can predict the spatial distributions of the electric and magnetic fields when currents in different directions are applied to the array-structured magnetic stimulation system. The study results show that in the section of z = 2 μm, the maximum and average magnetic field strengths of the array-structured magnetic stimulation system are 6.39 mT and 2.68 mT, respectively. The maximum and average electric field strengths are 614.7 mV/m and 122.82 mV/m, respectively, where 84.39% of the measured electric field values are greater than 73 mV/m. The average magnetic field strength of the focusing zone, i.e., the zone in between the two coils, is 3.38 mT with a mean square deviation of 0.18. Therefore, the array-structured multi-channel magnetic stimulation system based on a planar square spiral coil can have a small size of 412 μm × 412 μm × 1.7 μm, which helps improving the spatial distribution of electromagnetic field and increase the effectiveness of magnetic stimulation. The main contribution of this paper is a method for designing multichannel micro-magnetic stimulation devices.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Johannes Hartmann ◽  
Maximilian T. Schür ◽  
Steffen Hardt

AbstractA method to manipulate and control droplets on a surface is presented. The method is based on inducing electric dipoles inside the droplets using a homogeneous external electric field. It is shown that the repulsive dipole force efficiently suppresses the coalescence of droplets moving on a liquid-infused surface (LIS). Using a combination of experiments, numerical computations and semi-analytical models, the dependence of the repulsion force on the droplet volumes, the distance between the droplets and the electric field strength is revealed. The method allows to suppress coalescence in complex multi-droplet flows and is real-time adaptive. When the electric field strength exceeds a critical value, tip streaming from the droplets sets in. Based on that, it becomes possible to withdraw minute samples from an array of droplets in a parallel process.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Filippos Sofos ◽  
Theodoros E. Karakasidis ◽  
Ioannis E. Sarris

AbstractMolecular dynamics simulations are employed to estimate the effect of nanopore size, wall wettability, and the external field strength on successful ion removal from water solutions. It is demonstrated that the presence of ions, along with the additive effect of an external electric field, constitute a multivariate environment that affect fluidic interactions and facilitate, or block, ion drift to the walls. The potential energy is calculated across every channel case investigated, indicating possible ion localization, while electric field lines are presented, to reveal ion routing throughout the channel. The electric field strength is the dominant ion separation factor, while wall wettability strength, which characterizes if the walls are hydrophobic or hydrophilic has not been found to affect ion movement significantly at the scale studied here. Moreover, the diffusion coefficient values along the three dimensions are reported. Diffusion coefficients have shown a decreasing tendency as the external electric field increases, and do not seem to be affected by the degree of wall wettability at the scale investigated here.


2022 ◽  
Author(s):  
J Arturo Alonso ◽  
Ivan Calvo ◽  
Daniel Carralero ◽  
Jose Luis Velasco ◽  
José Manuel García Regaña ◽  
...  

Abstract The ongoing development of electromagnets based on High Temperature Superconductors has led to the conceptual exploration of high-magnetic-field fusion reactors of the tokamak type, operating at on-axis fields above 10 T. In this work we explore the consequences of the potential future availability of high-field three-dimensional electromagnets on the physics design point of a stellarator reactor. We find that, when an increase in the magnetic field strength $B$ is used to maximally reduce the device linear size $R\sim B^{-4/3}$ (with otherwise fixed magnetic geometry), the physics design point is largely independent of the chosen field strength/device size. A similar degree of optimization is to be imposed on the magnetohydrodynamic, transport and fast ion confinement properties of the magnetic configuration of that family of reactor design points. Additionally, we show that the family shares an invariant operation map of fusion power output as a function of the auxiliary power and relative density variation. The effects of magnetic field over-engineering and the $R(B)$ scaling of design points with constant neutron wall loading are also inspected. In this study we use geometric parameters characteristic of the \emph{helias} reactor, but most results apply to other stellarator configurations.


Galaxies ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 10
Author(s):  
Matthias Hoeft ◽  
Kamlesh Rajpurohit ◽  
Denis Wittor ◽  
Gabriella di Gennaro ◽  
Paola Domínguez-Fernández

Radio relics are extended radio emission features which trace shock waves in the periphery of galaxy clusters originating from cluster mergers. Some radio relics show a highly polarised emission, which make relics an excellent probe for the magnetisation of the intra-cluster medium. The origin of the relic polarisation is still debated. It could be a result of tangentially stretching the magnetic field at the shock surface. This scenario would naturally explain the alignment of the polarisation (E-vectors) with the shock normal. We have implemented a toy model for the relic polarisation according to this scenario. We find that the magnetic field strength itself crucially affects the fractional polarisation. Moreover, we find that the shock strength has surprisingly little effect on the overall polarisation fraction. Finally, we find that the fractional polarisation may decrease downstream depending on the magnetic field strength. Our results demonstrates that the shock compression scenario provides a very plausible explanation for the radio relic polarisation which specific features permitting to test the origin of radio relic polarisation.


2022 ◽  
Vol 12 (2) ◽  
pp. 644
Author(s):  
Andrei Vasile Nastuta ◽  
Torsten Gerling

Application desired functionality as well as operation expenses of cold atmospheric pressure plasma (CAP) devices scale with properties like gas selection. The present contribution provides a comparative investigation for a CAP system operated in argon or helium at different operation voltages and distance to the surface. Comparison of power dissipation, electrical field strength and optical emission spectroscopy from vacuum ultraviolet over visible up to near infrared ((V)UV-VIS-NIR) spectral range is carried out. This study is extended to safety relevant investigation of patient leakage current, induced surface temperature and species density for ozone (O3) and nitrogen oxides (NOx). It is found that in identical operation conditions (applied voltage, distance to surface and gas flow rate) the dissipated plasma power is about equal (up to 10 W), but the electrical field strength differs, having peak values of 320 kV/m for Ar and up to 300 kV/m for He. However, only for Ar CAP could we measure O3 up to 2 ppm and NOx up to 7 ppm. The surface temperature and leakage values of both systems showed different slopes, with the biggest surprise being a constant leakage current over distance for argon. These findings may open a new direction in the plasma source development for Plasma Medicine.


2022 ◽  
Author(s):  
A.V. Mikhailov

Abstract. In this work, using a series of numerical experiments, the dependence of the magnetic field strength of the response of the reinforcing bar to an external magnetizing field on the magnetic properties of the reinforcing bar was investigated. The possibility of determining with high accuracy the diameter of reinforcing bars, regardless of the magnetic properties of the material from which they are made, has been proven.


Nature ◽  
2022 ◽  
Vol 601 (7891) ◽  
pp. 49-52
Author(s):  
T.-C. Ching ◽  
D. Li ◽  
C. Heiles ◽  
Z.-Y. Li ◽  
L. Qian ◽  
...  

AbstractMagnetic fields have an important role in the evolution of interstellar medium and star formation1,2. As the only direct probe of interstellar field strength, credible Zeeman measurements remain sparse owing to the lack of suitable Zeeman probes, particularly for cold, molecular gas3. Here we report the detection of a magnetic field of +3.8 ± 0.3 microgauss through the H I narrow self-absorption (HINSA)4,5 towards L15446,7—a well-studied prototypical prestellar core in an early transition between starless and protostellar phases8–10 characterized by a high central number density11 and a low central temperature12. A combined analysis of the Zeeman measurements of quasar H I absorption, H I emission, OH emission and HINSA reveals a coherent magnetic field from the atomic cold neutral medium (CNM) to the molecular envelope. The molecular envelope traced by the HINSA is found to be magnetically supercritical, with a field strength comparable to that of the surrounding diffuse, magnetically subcritical CNM despite a large increase in density. The reduction of the magnetic flux relative to the mass, which is necessary for star formation, thus seems to have already happened during the transition from the diffuse CNM to the molecular gas traced by the HINSA. This is earlier than envisioned in the classical picture where magnetically supercritical cores capable of collapsing into stars form out of magnetically subcritical envelopes13,14.


Sign in / Sign up

Export Citation Format

Share Document