quantum wires
Recently Published Documents


TOTAL DOCUMENTS

3187
(FIVE YEARS 108)

H-INDEX

90
(FIVE YEARS 6)

2022 ◽  
Vol 1048 ◽  
pp. 205-211
Author(s):  
Hoang Van Ngoc

Conductivity tensor is an important concept in materials, this work studies conductivity tensors in cylindrical quantum wires with parabolic potential in the presence of two external fields, a linearly polarized electromagnetic wave, and a laser field. This work is also only considered for the case of electron-acoustic phonon scattering. Research results are obtained by using quantum kinetic equations for the carrier system in a quantum wire. The conductivity tensor is calculated by solving the quantum kinetic equation of the system, which is a function of the external field frequency, the external field amplitude, the temperature of the helium, and parameters specific to the quantum wire. Results will also be examined and plotted for quantum wire GaAs / GaAsAl.


2021 ◽  
pp. 2101049
Author(s):  
Zhilong Song ◽  
Zhixiang Hu ◽  
Jingyao Liu ◽  
Jia Yan ◽  
Huaming Li ◽  
...  
Keyword(s):  

Author(s):  
Nikhil Danny Babu ◽  
Girish Sampath Setlur

Abstract We study a system of two non-interacting quantum wires with fermions of opposite chirality with a point contact junction at the origin across which tunneling can take place when an arbitrary time-dependent bias between the wires is applied. We obtain the exact dynamical non-equilibrium Green function by solving Dyson’s equation analytically. Both the space-time dependent two and four-point functions are written down in a closed form in terms of simple functions of position and time. This allows us to obtain, among other things, the I-V characteristics for an arbitrary time-dependent bias. Our method is a superior alternative to competing approaches to non-equilibrium as we are able to account for transient phenomena as well as the steady state. We study the approach to steady state by computing the time evolution of the equal-time one-particle Green function. Our method can be easily applied to the problem of a double barrier contact whose internal properties can be adjusted to induce resonant tunneling leading to a conductance maximum. We then consider the case of a finite bandwidth in the point contact and calculate the non-equilibrium transport properties which exhibit non-Markovian behaviour. When a subsequently constant bias is suddenly switched on, the current shows a transient build up before approaching its steady state value in contrast to the infinite bandwidth case. This transient property is consistent with numerical simulations of lattice systems using time-dependent DMRG (tDMRG) suggesting thereby that this transient build up is merely due to the presence of a short distance cutoff in the problem description and not on the other details.


Author(s):  
Manvir Singh Kushwaha

Abstract We investigate a periodic system of vertically stacked InAs/GaAs quantum dots (VSQD) subjected to a two-dimensional confining harmonic potential and a magnetic field in the symmetric gauge. Given the tiny length scales, adequate lateral confinement, and strong vertical coupling involved in the experiments, the VSQD system has become known for mimicking the standard semiconducting quantum wires. An exact analytical diagnosis of the problem allows us to show the system’s direct relevance to the physics of musical sounds, magnetization, magnetotransport, and the designing of the optical amplifiers. The results suggest making the most of the system for applications in single-electron devices and quantum state transfer in the quantum computation.


Author(s):  
Irina I. Yakimenko ◽  
Ivan P. Yakimenko

Abstract Quantum wires (QWs) and quantum point contacts (QPCs) have been realized in GaAs/AlGaAs heterostructures in which a two-dimensional electron gas (2DEG) resides at the interface between GaAs and AlGaAs layered semiconductors. The electron transport in these structures has previously been studied experimentally and theoretically, and a 0.7 conductance anomaly has been discovered. The present paper is motivated by experiments with a QW in shallow symmetric and asymmetric confinements that have shown additional conductance anomalies at zero magnetic field. The proposed device consists of a QPC that is formed by split gates and a top gate between two large electron reservoirs. This paper is focused on the theoretical study of electron transport through a wide top-gated QPC in a low-density regime and is based on density functional theory. The electron-electron interaction and shallow confinement make the splitting of the conduction channel into two channels possible. Each of them becomes spin-polarized at certain split and top gates voltages and may contribute to conductance giving rise to additional conductance anomalies. For symmetrically loaded split gates two conduction channels contribute equally to conductance. For the case of asymmetrically applied voltage between split gates conductance anomalies may occur between values of 0.25(2e2/h) and 0.7(2e2/h) depending on the increased asymmetry in split gates voltages. This corresponds to different degrees of spin-polarization in the two conduction channels that contribute differently to conductance. In the case of a strong asymmetry in split gates voltages one channel of conduction is pinched off and just the one remaining channel contributes to conductance. We have found that on the perimeter of the anti-dot there are spin-polarized states. These states may also contribute to conductance if the radius of the anti-dot is small enough and tunnelling between these states may occur. The spin-polarized states in the QPC with shallow confinement tuned by electric means may be used for the purposes of quantum technology.


Entropy ◽  
2021 ◽  
Vol 23 (12) ◽  
pp. 1573
Author(s):  
Christoph Strunk

A unified view on macroscopic thermodynamics and quantum transport is presented. Thermodynamic processes with an exchange of energy between two systems necessarily involve the flow of other balancable quantities. These flows are first analyzed using a simple drift-diffusion model, which includes the thermoelectric effects, and connects the various transport coefficients to certain thermodynamic susceptibilities and a diffusion coefficient. In the second part of the paper, the connection between macroscopic thermodynamics and quantum statistics is discussed. It is proposed to employ not particles, but elementary Fermi- or Bose-systems as the elementary building blocks of ideal quantum gases. In this way, the transport not only of particles but also of entropy can be derived in a concise way, and is illustrated both for ballistic quantum wires, and for diffusive conductors. In particular, the quantum interference of entropy flow is in close correspondence to that of electric current.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
L. Alt ◽  
C. Reichl ◽  
M. Berl ◽  
W. Dietsche ◽  
W. Wegscheider

AbstractElectric conductors with dimensions reduced to the nanometer scale are the prerequisite of the quantum devices upon which the future advanced electronics is expected to be based. In the past, the fabrication of one-dimensional (1D) wires has been a particular challenge because they have to be defect-free over their whole length, which can be several tens µm. Excellent 1D wires have been produced by cleaving semiconductors (GaAs, AlGaAs) in ultra high vacuum and overgrowing the pristine edge surface by molecular beam epitaxy (MBE)1,2. Unfortunately, this cleaved edge overgrowth (CEO) technique did not find wide-spread use because it requires a series of elaborate steps that are difficult to accomplish. In this Letter, we present a greatly simplified variation of this technique where the cleaving takes place in ambient air and the MBE overgrowth is replaced by a standard deposition process. Wires produced by this cleaved edge deposition (CED) technique have properties that are as least as good as the traditional CEO ones. Due to its simplicity, the CED technique offers a generally accessible way to produce 1D devices.


2021 ◽  
Vol 104 (15) ◽  
Author(s):  
Thomas Müller ◽  
Marcel Gievers ◽  
Heinrich Fröml ◽  
Sebastian Diehl ◽  
Alessio Chiocchetta
Keyword(s):  

2021 ◽  
Vol 127 (11) ◽  
Author(s):  
Clément De Daniloff ◽  
Marin Tharrault ◽  
Cédric Enesa ◽  
Christophe Salomon ◽  
Frédéric Chevy ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document