An analytical study of the fluid film force in finite-length journal bearings. Part I

2001 ◽  
Vol 13 (4) ◽  
pp. 329-340 ◽  
Author(s):  
V. D'Agostino ◽  
D. Guida ◽  
A. Ruggiero ◽  
A. Senatore
1984 ◽  
Vol 106 (4) ◽  
pp. 468-472 ◽  
Author(s):  
M. O. A. Mokhtar ◽  
W. Y. Aly ◽  
G. S. A. Shawki

This paper presents the results of an analytical study of the performance of a cylindrical journal bearing of finite length as influenced by undulations intentionally produced on the surface. With the aid of a digital computer, the analysis has been applied to some common cases to obtain relevant numerical solutions. Compared with journal bearings having perfectly smooth surfaces, wavy bearings may well run at lower values of journal eccentricities and attitude angles. Wavy bearings may thus operate with higher safety. It is herein also established that, with load criterion as parameter, the higher the wave amplitude ac and the number of waves along the bearing circumference nc, the lower would be the eccentricity ratio. Moreover, when running at same eccentricity, higher values of ac and nc show a tendency of the journal center to move closer to the load line, thus leading to lower attitude angles.


1989 ◽  
Vol 111 (3) ◽  
pp. 426-429 ◽  
Author(s):  
T. Kato ◽  
Y. Hori

A computer program for calculating dynamic coefficients of journal bearings is necessary in designing fluid film journal bearings and an accuracy of the program is sometimes checked by the relation that the cross terms of linear damping coefficients of journal bearings are equal to each other, namely “Cxy = Cyx”. However, the condition for this relation has not been clear. This paper shows that the relation “Cxy = Cyx” holds in any type of finite width journal bearing when these are calculated under the following condition: (I) The governing Reynolds equation is linear in pressure or regarded as linear in numerical calculations; (II) Film thickness is given by h = c (1 + κcosθ); and (III) Boundary condition is homogeneous such as p=0 or dp/dn=0, where n denotes a normal to the boundary.


1965 ◽  
Vol 87 (1) ◽  
pp. 185-192 ◽  
Author(s):  
H. S. Cheng ◽  
C. H. T. Pan

This paper extends the method of Cheng and Trumpler [5] to study stability of plain cylindrical gas journal bearings of finite length. Both equilibrium and stability results have been obtained.


Sign in / Sign up

Export Citation Format

Share Document